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Introduction

k be a field.

R = k[x1, . . . , xd] be a polynomial ring.

G be a finite subgroup of GLd(k).

G acts linearly on R. In other words, G acts on R by degree preserving
k-algebra automorphism.

The ring of invariants of G is defined as

RG = {r ∈ R | g(r) = r, for all g ∈ G}.
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Example

Let σ =

[
0 1
1 0

]
and G = ⟨σ⟩ be a group acting on R = k[x, y].

Then σ(x) = y and σ(y) = x.

RG = {r ∈ R | g(r) = r, for all g ∈ G}

= k[x + y, xy].

Consider the action of the permutation group Sd ⊆ GLd(k) on a polynomial
ring R = k[x1, . . . , xd], where Sd acts by permuting the variables.

Let σ1, . . . , σd denote the elementary symmetric polynomials in x1, . . . , xd.

Then RSd = k[σ1, . . . , σd] and hence is a polynomial ring.
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Properties of the invariant ring

Question: For which groups G, is the invariant ring
• a polynomial ring? • a Cohen-Macaulay ring?

An element g of G is called a pseudo-reflection if it fixes a codimension 1
subspace. In other words rank(g − I) ≤ 1.

Non-modular case (when order of G is invertible in k)

(G.C. Shephard-J.A. Todd (1954), C. Chevalley (1955), J.P. Serre (1968))
RG is a polynomial ring ⇐⇒ G is generated by pseudo-reflections.

(J.A. Eagon - M. Hochster, 1971) RG is Cohen-Macaulay.
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Properties of the invariant ring: the modular case

Modular case (when char k divides the order of G)

(Serre) If RG is a polynomial ring, then G is generated by pseudo-reflections.

(H. Nakajima, 1979) G is a group of order p3 generated by pseudo-reflections.

G =




1 0 a + b b
0 1 b b + c
0 0 1 0
0 0 0 1

 ∈ GL4(Fp) | a, b, c,∈ Fp

 .

But RG is not a polynomial ring.

Let G = ⟨(12)(34)(56)⟩ act on R = F2[x1, y1, x2, y2, x3, y3]. Then RG is not a
Cohen-Macaulay ring.
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Local cohomology modules

The top local cohomology module Hd
R+

(R) = k.
{[

1
xa1

1 ···xad
d

]
| a1, . . . , ad > 0

}
.

The a-invariant, a(R) = max{t | Hd
R+

(R)t ̸= 0}.

When a group G acts on a ring R and R+ is a G-stable ideal, then the action of
G extends to the modules Hi

R+
(R).

When |G| ∈ k×, we have Hd
R+

(R)G ≃ Hd
RG
+
(RG).

Example. Let G = A3 act on R = F3[x, y, z]. For ∆ = x2y + y2z + xz2,

RG = k[σ1, σ2, σ3,∆]/(∆2 −∆(σ1σ2 − σ3
1)− σ6

1 + σ3
1σ3 + σ3

2).

Note that [∆/σ1σ2σ3] ∈ H3
m(R

G) but the image of this element is zero in
H3

m(R)
G.
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Main results (Goel - Jeffries - Singh)

Theorem. Let G be a finite group acting linearly on R = k[x1, . . . , xd] with no
pseudo-reflections. Then the following complex of RG-modules is exact⊕

g∈G

Hd
m(R)

σ−→ Hd
m(R)

Tr−→ Hd
m(R

G) −→ 0,

where σ((ηg)g) =
∑

g∈G(ηg − g(ηg)) and Tr(ζ) =
∑

g∈G g(ζ).

Consider the action of the group G = ⟨g = (12)⟩ on R = F2[x, y] by g(x) = y
and g(y) = x. Then for [x/σ1σ2] ∈ H2

m(R),

Tr([x/σ1σ2]) = [σ1/σ1σ2] = [0].

But [x/σ1σ2] /∈ Im(1 − g). This is because rank(H2
m(R)−2) = 1 and

(1 − g)([x/σ1σ2]) = [0] implying that (1 − g) is a zero map on H2
m(R)−2.
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Main results (Goel - Jeffries - Singh)

Theorem A. Let G be a finite group acting linearly on R. Then a(RG) = a(R)
if and only if G has no pseudo-reflections and G is a subgroup of SLd(k).

Lemma. Let G be a finite subgroup of GLd(k) and H a subgroup of G, acting
naturally on R. Then the inequality a(RG) ≤ a(RH) holds.

Theorem B. Let G be a finite cyclic group with no pseudo-reflections. Then
the Hilbert series of Hd

m(R
G) and Hd

m(R)
G coincide.

There is an exact sequence

Hd
m(R)

1−g−−→ Hd
m(R) → Hd

m(R
G) → 0.

Since the kernel of the first map is Hd
m(R)

G, the statement follows.
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Example

Consider the representation of the Klein-4 group G, over F2, determined by the
matrices:

g =



1, 0, 0, 0, 0, 0
0, 1, 1, 0, 0, 0
0, 0, 1, 0, 0, 0
0, 0, 0, 1, 0, 0
0, 0, 0, 0, 1, 1
0, 0, 0, 0, 0, 1


and h =



1, 0, 1, 0, 0, 0
0, 1, 1, 0, 0, 0
0, 0, 1, 0, 0, 0
0, 0, 0, 1, 0, 1
0, 0, 0, 0, 1, 1
0, 0, 0, 0, 0, 1


.

Let G act on the polynomial ring R = F2[u, v,w, x, y, z].
Then rank [H6

m(R
G)]−7 = 2 whereas rank [H6

m(R)
G]−7 = 4.
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