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Frobenius and singularities

I Here all the rings are Noetherian and of prime characteristic p > 0.

De�nition
The Frobenius map F : R → R is a ring homomorphism that sends
r 7→ rp.

Lemma
A ring R is reduced (i.e. no nonzero nilpotents) if and only if F : R → R
is injective.

Lemma
Let R = Fp[X1, · · · ,Xn]. Then R is a free module over F (R) with basis

{X i1
1
. . .X in

n : 0 ≤ ij ≤ p − 1, j = 1, · · · , n}.

More generally,

Theorem (Kunz)
A ring R is regular if and only if F is a �at map.
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F-singularities

I Using the action of the Frobenius many kinds of singularities have

been de�ned, all together they are called F -singularities.

I Let I be an ideal of R. For any q = pe , de�ne I [q] := (xq | x ∈ I ).

Tight closure of I is de�ned by

I ∗ = {r ∈ R : ∃c ∈ R \ ∪p∈Min R p, crq ∈ I [q] ∀ q = pe � 0}.

An ideal I is called tightly closed if I ∗ = I .

I A ring is weakly F -regular if every ideal is tightly closed. A ring is

called F -regular if all its localizations are weakly F -regular.

I A ring R is F -rational if every parameter ideal is tightly closed.

I A ring R is F -pure if the Frobenius homomorphism F : R → R is a

pure map.

I A ring R is F -injective if the map F : H i
m(R)→ H i

m(R) is injective

for any maximal ideal m ⊂ R and i ∈ N.
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F-singularities and examples

F -regular +3

��

F -rational

��
F -pure +3 F -injective

Example

I Summands of a polynomial ring over a �eld of prime characteristic
are F -regular.

I Normal a�ne semigroup rings are F -regular.

I Let R = K [X ,Y ,Z ]/(X 3 + Y 3 + Z 3) with K a �eld of char p > 3.
Then R is F -pure if and only if p ≡ 1(mod 3), but never F -regular.
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Initial ideal

I Let S = K [X1, . . . ,Xn] be a polynomial ring over a �eld K . A

monomial order < on S is a total order on monomials of S

satisfying

• 1 < u for all monomial u 6= 1;

• if u, v monomials with u < v , then uw < vw for every monomial

w .

I Let I ⊂ S be an ideal and < be a monomial order on S . De�ne the

initial ideal of I in S as in<(I ) := (in<(f ) : f ∈ I ), where in<(f )

stands for the biggest term of f with respect <.

I Given a monomial order <, it turns out that it is possible to choose

a suitable weight vector w ∈ (N>0)
n (depending on < and I ) such

that in<(I ) = inw (I ). Here inw (I ) = (inw (f ) : f ∈ I ), where inw (f )

stands for the sum of the terms of f with maximal w -degree.
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Gröbner deformation

The formation of inw (I ) can also be seen as a deformation:

I Let f =
∑

fj ∈ S be a nonzero polynomial with homogeneous

components fj (with respect to w). Let t be an extra homogenizing

variable, de�ne the w-homogenization of f , as

f h =
∑

fj t
d−j ∈ S [t], where d = degw f and de�ne

homw (I ) := (f h : f ∈ I ) ⊆ S [t], called the w-homogenization of I .

I One note that homw (I ) is a homogeneous ideal in S[t] with respect

to the extended weight w ′ = (w1, · · · ,wn, 1) ∈ Nn+1.

I Then we say that R = S [t]/homw (I ) is a Gröbner deformation,

and we have that:

• R is a N-graded ring such that R0 = K and t ∈ R has degree 1

(the grading is given by deg(Xi ) = wi and deg(t) = 1).

• t is a nonzero-divisor on R.

• R/tR ∼= S/inw (I ).

• R/(t − 1)R ∼= S/I .
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Relations between properties of S/I and of S/in<(I )

Theorem
Let I be a homogeneous ideal of S and < be a monomial order on S .
Then
(1) HF (S/I ) = HF (S/in<(I )), in particular dim(S/I ) = dim(S/in<(I )).
(2) depth S/I ≥ depth S/in<(I ); hence if S/in<(I ) is CM, S/I is so.
(3) If S/in<(I ) is Gorenstein, S/I is so.
(4) reg S/I ≤ reg S/in<(I ).

A recent work of A. Conca and M. Varbaro states that I and in<(I ) are

much more related than usual provided the latter is a squarefree

monomial ideal. More precisely,

Theorem (Conca, Varbaro)
Let I be a homogeneous ideal of S such that in<(I ) is a square-free
monomial ideal for some monomial order <. Then
(1) depth S/I = depth S/in<(I ); hence S/in<(I ) is CM, if and only if
S/I is so.
(2) reg S/I = reg S/in<(I ).
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Questions

Q1. Let I be an ideal of a polynomial ring S over a �eld K . When is

there a monomial order < on S such that in<(I ) is squarefree?

Q2. For which kind of F -singularities do we have that S/I has those

F -singularities provided that, for some weight vector w ∈ Nn, S/inw (I )

has those F -singularities?



Theorem (-, Varbaro)
Let S = K [X1, . . . ,Xn] be the polynomial ring in n variables over a �eld
K (not necessarily of positive characteristic). Let I ⊂ S be a radical
ideal, < a monomial order of S , and call h = max{ht(p) : p ∈ Min(I )}. If
in<(I

(h)) contains a squarefree monomial, then in<(I ) is a squarefree
monomial ideal.

Idea of the Proof: We �rst prove for prime characteristic, and then

derive over �elds of characteristic 0. The proof in prime characteristic

uses a suitable version of Fedder criterion.



Negative answers of Q2. for F-regularity

Example
Let S = K [X1, . . . ,X5] where K has characteristic p > 2, and I the ideal
generated by the 2-minors of the matrix:(

X 2

4
+ X 3

5
X3 X2

X1 X 2

4
X 4

3
− X2

)
.

I Considering the weight vector w = (6, 24, 6, 3, 1) of
(X1,X2,X3,X4,X5), one can see that inw (I ) is the ideal generated
by the 2-minors of the matrix:(

X 2

4
X3 X2

X1 X 2

4
X 4

3
− X2

)
.

I By a work of Anurag Singh, S/inw (I ) is F -regular.

I By a work of Anurag Singh it is known that S/I is not F -regular.



Negative answer of Q2. for F-purity

Example
Let S = K [X1, . . . ,X5] where K has characteristic p > 3, and I the ideal
generated by the 2-minors of the matrix of previous Example, namely:(

X 2

4
+ X 3

5
X3 X2

X1 X 2

4
X 4

3
− X2

)
.

I If < is the lexicographic monomial order with
X1 > X2 > X3 > X4 > X5, then in<(I ) = (X1X3,X1X2,X2X3).

I S/in<(I ) is F -pure.

I Again by a work of A. Singh, S/I is not F -pure.



Positive answers for F-rationality and strong

F-injectivity

F-pure =⇒ strongly F -injective =⇒ F -injective.

Theorem (-, Varbaro)
Let S = K [X1, . . . ,Xn] be a polynomial ring over a �eld K of prime
characteristic and w ∈ (N>0)

n. If I ⊂ S is an ideal such that S/inw (I ) is
F -rational (resp. strongly F -injective), then S/I is F -rational (resp.
strongly F -injective).

Corollary
Let S = K [X1, . . . ,Xn] be a polynomial ring over a �eld K of prime
characteristic and < be a monomial order on S . Let I ⊂ S an ideal of S
such that in<(I ) is radical, then S/I is strongly F -injective, and so
F -injective.
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F-singularities of binomial edge algebras

De�nition
Let G = (V ,E ) be a simple graph on the vertex set V = {1, · · · , n}. Let
S = K [X1, · · · ,Xn,Y1 · · · ,Yn], where K is a �eld. De�ne the binomial

edge ideal corresponding to G as

IG := (XiYj − XjYi : {i , j} ∈ E ).

And the K -algebra S/IG de�ned by IG is called the binomial edge

algebra.

Example

1 2

3

G = IG = (X1Y2 − X2Y1,X2Y3 − X3Y2,X1Y3 − X3Y1).

Corollary (-, Varbaro)
Let G be a simple graph. Then the corresponding binomial edge algebra
S/IG de�ned over a �eld of prime characteristic p > 0 is strongly
F -injective, and so F -injective.
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F-singularities of ASL

De�nition
Let A = ⊕i∈NAi be a N-graded algebra and let (H,≺) be a �nite poset.
Let H → ∪i>0Ai be an injective function. The elements of H will be
identi�ed with their images. Given a chain h1 � h2 � · · · � hs of
elements of H the corresponding product h1 · · · hs ∈ A is called standard
monomial. One says that A is an Algebra with straightening laws or

ASL on H (with respect to the given embedding H into ∪i>0Ai ) if three
conditions are satis�ed:

I The elements of H generate A as a A0-algebra.

I The standard monomials are A0-linearly independent.

I For every pair h1, h2 of incomparable elements of H there is a
relation

h1h2 =
u∑

j=1

λjhj1 · · · hjvj

where λj ∈ A0 \ {0}, the hj1 · · · hjvj are distinct standard monomials
and, assuming that hj1 � · · · � hjvj , one has hj1 ≺ h1 and hj1 ≺ h2
for all j .



Example
Let R = K [X11,X12,X21,X22]/(X11X22 − X12X21). Then R is an ASL
with the following poset H:

X11

X12

X22

X21

Corollary (-,Varbaro)
Let R be an ASL over a �eld of prime characteristic p > 0. Then R is
strongly F -injective, and so F -injective.



An example

I Let S = K [X1,X2,X3,X4], where K is algebraically closed �eld of

characteristic p > 0, and I the ideal generated by the 2-minors of

the matrix: (
X 4

4
X1 X3

X2 X 4

4
X2 − X3

)
.

I By a work of Hochster and Huneke one can see that S/I is not

F -pure.

I The ring S/I can be given an ASL structure on the poset H below:

X4

X3 X2 X1

that is, in the poset H we have X4 < X3,X2,X1 (X1,X2 and X3 are

incomparable).
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