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Theorem (Kunz)
A ring R is regular if and only if F is a flat map.
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Using the action of the Frobenius many kinds of singularities have
been defined, all together they are called F-singularities.

Let / be an ideal of R. For any q = p¢, define /19 .= (x9 | x € /).
Tight closure of / is defined by

I"={reR:3c€ R\ Upecmin r b, cr? el vy q = p° > 0}.

An ideal / is called tightly closed if /* = /.

A ring is weakly F-regular if every ideal is tightly closed. A ring is
called F-regular if all its localizations are weakly F-regular.

» A ring R is F-rational if every parameter ideal is tightly closed.

A ring R is F-pure if the Frobenius homomorphism F: R — Ris a
pure map.

A ring R is F-injective if the map F : H! (R) — H! (R) is injective
for any maximal ideal m € R and / € N.



F-singularities and examples

F-regular =—=> F-rational

| ]

F-pure =——=> F-injective



F-singularities and examples

F-regular =—=> F-rational

| ]

F-pure =——=> F-injective

Example

» Summands of a polynomial ring over a field of prime characteristic
are F-regular.



F-singularities and examples

F-regular =—=> F-rational

| ]

F-pure =——=> F-injective

Example

» Summands of a polynomial ring over a field of prime characteristic
are F-regular.

» Normal affine semigroup rings are F-regular.



F-singularities and examples

F-regular =—=> F-rational

| ]

F-pure =——=> F-injective

Example
» Summands of a polynomial ring over a field of prime characteristic
are F-regular.

» Normal affine semigroup rings are F-regular.

> Let R = K[X,Y,Z]/(X?+ Y3+ Z3) with K a field of char p > 3.
Then R is F-pure if and only if p = 1(mod 3), but never F-regular.



Initial ideal

> Let S = K[Xi,...,X,] be a polynomial ring over a field K. A
monomial order < on S is a total order on monomials of S
satisfying
e 1 < u for all monomial u # 1;

e if u, v monomials with u < v, then uw < vw for every monomial
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Initial ideal

> Let S = K[Xi,...,X,] be a polynomial ring over a field K. A
monomial order < on S is a total order on monomials of S
satisfying
e 1 < u for all monomial u # 1;

e if u, v monomials with u < v, then uw < vw for every monomial
w.

» Let /| C S be an ideal and < be a monomial order on S. Define the
initial ideal of / in S as inc (/) := (in<(f) : f € ), where in(f)
stands for the biggest term of f with respect <.

» Given a monomial order <, it turns out that it is possible to choose
a suitable weight vector w € (N>¢)” (depending on < and /) such
that in. (1) = in, (). Here in, (1) = (iny(f) : f € 1), where in, (f)
stands for the sum of the terms of f with maximal w-degree.
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» Then we say that R = S[t]/hom,, (/) is a Grobner deformation,
and we have that:
e Ris a N-graded ring such that Ry = K and t € R has degree 1
(the grading is given by deg(X;) = w; and deg(t) = 1).
e t is a nonzero-divisor on R.
e R/tR=S/in,(I).
e R/(t—1)RxS/I.



Relations between properties of S// and of S/in-(/)

Theorem

Let | be a homogeneous ideal of S and < be a monomial order on S.
Then

(1) HF(S/1) = HF(S/in< (1)), in particular dim(S/1) = dim(S/in<(1)).
(2) depth S/1 > depth S/in.(I); hence if S/in. (1) is CM, S/I is so.
(3) If S/in< (1) is Gorenstein, S/I is so.

(4) reg S/1 < reg S/in(1).
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A recent work of A. Conca and M. Varbaro states that / and in_(/) are

much more related than usual provided the latter is a squarefree
monomial ideal. More precisely,

Theorem (Conca, Varbaro)

Let | be a homogeneous ideal of S such that in.(I) is a square-free
monomial ideal for some monomial order <. Then

(1) depth S/1 = depth S/in(1); hence S/in(I) is CM, if and only if

S/l is so.
(2) reg S/1 = reg S/in(1).



Questions

Q1. Let / be an ideal of a polynomial ring S over a field K. When is
there a monomial order < on S such that in.(/) is squarefree?

Q2. For which kind of F-singularities do we have that S// has those
F-singularities provided that, for some weight vector w € N", S/in,, (/)
has those F-singularities?



Theorem (-, Varbaro)

Let S = K[Xi, ..., X,] be the polynomial ring in n variables over a field
K (not necessarily of positive characteristic). Let | C S be a radical
ideal, < a monomial order of S, and call h = max{ht(p) : p € Min(Il)}. If
in_ (I contains a squarefree monomial, then in_(1) is a squarefree
monomial ideal.

Idea of the Proof: We first prove for prime characteristic, and then
derive over fields of characteristic 0. The proof in prime characteristic
uses a suitable version of Fedder criterion.



Negative answers of Q2. for F-regularity

Example

Let S = K[Xi, ..., Xs] where K has characteristic p > 2, and / the ideal
generated by the 2-minors of the matrix:

X2+XE X3 X
X X2 OXE—X)

» Considering the weight vector w = (6,24,6,3,1) of
(X1, X2, X3, Xa, Xs5), one can see that in, (/) is the ideal generated
by the 2-minors of the matrix:

X2 X3 Xo
X, X2 Xi-Xx)
» By a work of Anurag Singh, S/in, (1) is F-regular.
> By a work of Anurag Singh it is known that S// is not F-regular.



Negative answer of Q2. for F-purity

Example
Let S = K[Xi, ..., Xs] where K has characteristic p > 3, and / the ideal
generated by the 2-minors of the matrix of previous Example, namely:

X42 + X53 X3 X5
X X2 XE-X)

» If < is the lexicographic monomial order with
X1 > Xo > Xz > Xy > X, then in<(l) = (X1X3,X1X2,X2X3).

> S/in.(I) is F-pure.
» Again by a work of A. Singh, S// is not F-pure.
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Theorem (-, Varbaro)

Let S = K[X1,...,X,] be a polynomial ring over a field K of prime
characteristic and w € (Nso)". If | C S is an ideal such that S/in, (1) is
F-rational (resp. strongly F-injective), then S/I is F-rational (resp.
strongly F-injective).

Corollary

Let S = K[Xi,...,X,] be a polynomial ring over a field K of prime
characteristic and < be a monomial order on' S. Let | C S an ideal of S
such that in. (1) is radical, then S/I is strongly F-injective, and so
F-injective.



F-singularities of binomial edge algebras
Definition
Let G = (V, E) be a simple graph on the vertex set V = {1,--- ,n}. Let
S=K[Xq, -, Xn, Y1+, Yy], where K is a field. Define the binomial
edge ideal corresponding to G as

Ie = (X;Y; = X;Y; : {i.j} € E).

And the K-algebra S/l defined by /¢ is called the binomial edge
algebra.

Example
3

G = A le =(X1Ya = Xo Y1, Xo Y5 — X3 Y2, X1 Y3 — X3 Y1).
1 2
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Corollary (-, Varbaro)

Let G be a simple graph. Then the corresponding binomial edge algebra
S/lc defined over a field of prime characteristic p > 0 is strongly
F-injective, and so F-injective.



F-singularities of ASL

Definition
Let A = @;enA; be a N-graded algebra and let (H, <) be a finite poset.
Let H — U;soA; be an injective function. The elements of H will be
identified with their images. Given a chain hy < hy < --- < hg of
elements of H the corresponding product hy - - - hs € A is called standard
monomial. One says that A is an Algebra with straightening laws or
ASL on H (with respect to the given embedding H into U;jsA;) if three
conditions are satisfied:

» The elements of H generate A as a Ag-algebra.

» The standard monomials are Ag-linearly independent.

» For every pair hy, hy of incomparable elements of H there is a
relation

u
hihy = Ahjy - hy,
j=1

where \j € Ag \ {0}, the hjy - - - h;, are distinct standard monomials
and, assuming that hj; < --- < h;,, one has hjy < hy and hj; < hy
for all §.



Example

Let R = K[Xll,Xlg,XQ;l, XQQ]/(X11X22 — X12X21). Then R is an ASL
with the following poset H:

X22

7N
N S

X11

Xl X21

Corollary (-,Varbaro)

Let R be an ASL over a field of prime characteristic p > 0. Then R is
strongly F-injective, and so F-injective.



An example

> Let S = K[X1, Xz, X3, X4], where K is algebraically closed field of
characteristic p > 0, and /| the ideal generated by the 2-minors of

X X1 X
Xo X} Xo—X3)"

» By a work of Hochster and Huneke one can see that S// is not

the matrix:

F-pure.
» The ring S// can be given an ASL structure on the poset H below:

X5 X X
AN

|
X

that is, in the poset H we have Xy < X3, X5, X (X1, Xo and X3 are
incomparable).
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