F-THRESHOLD OF FILTRATION OF IDEALS

Arvind Kumar (joint work with Mitra Koley)

> Chennai Mathematical Institute Chennai, India.

> > May 2, 2023

INTRODUCTION

Mustata, Takagi and Watanabe (2004): Let (R, m) be a regular local ring of characteristic p > 0. Let a, I be non-zero proper ideals of R such that a ⊆ √I. For every e ≥ 1, ν^I_a(p^e) := max{r : a^r ∉ I^[p^e]}. Then, the *F*-threshold of a with respect to I is

$$\mathcal{C}^{I}(\mathfrak{a}) := \lim_{e \to \infty} \frac{\nu_{\mathfrak{a}}^{I}(p^{e})}{p^{e}}.$$

• Huneke, Mustata, Takagi and Watanabe (2008): Let *R* be a Noetherian ring of positive characteristic *p*.

$$\mathcal{C}^{I}_{+}(\mathfrak{a}) := \limsup_{e \to \infty} \frac{\nu^{I}_{\mathfrak{a}}(p^{e})}{p^{e}} \text{ and } \mathcal{C}^{I}_{-}(\mathfrak{a}) := \liminf_{e \to \infty} \frac{\nu^{I}_{\mathfrak{a}}(p^{e})}{p^{e}}.$$

• De Stefani, Betancourt, and Perez (2018): $\mathcal{C}_{+}^{I}(\mathfrak{a}) = \mathcal{C}_{-}^{I}(\mathfrak{a}).$

FILTRATION OF IDEALS

Let R be a Noetherian commutative ring of positive characteristic p.

Definition

A filtration of ideals in R is a collection of ideals $\{a_n\}_{n\geq 0}$ with $a_0 = R$ satisfying the followings:

$$\ \, \mathbf{a}_{n+1} \subseteq \mathbf{a}_n \text{ for all } n \geq 0,$$

a_m
$$\mathfrak{a}_n \subseteq \mathfrak{a}_{m+n}$$
 for all $m, n \ge 0$.

Let \mathfrak{a} be a nonzero ideal in R.

- Ordinary power filtration of \mathfrak{a} : $\mathfrak{a}_n = \mathfrak{a}^n$ for all $n \ge 0$.
- Symbolic power filtration of \mathfrak{a} : take $\mathfrak{a}_n = \mathfrak{a}^{(n)}$ for all $n \ge 0$.
- Integral closure power filtration of \mathfrak{a} : take $\mathfrak{a}_n = \overline{\mathfrak{a}^n}$ for all $n \ge 0$.
- Tight closure power filtration of \mathfrak{a} : take $\mathfrak{a}_n = (\mathfrak{a}^n)^*$ for all $n \ge 0$.

F-THRESHOLD OF FILTRATION OF IDEALS

- Let *I* be a non-zero proper ideal of *R* and a_● = {a_i}_{i≥0} be a filtration of ideals in *R*.
- For every non-negative integer e, we define

$$\nu_{\mathfrak{a}_{\bullet}}^{I}(p^{e}) := \sup\{r \in \mathbb{Z}_{\geq 0} : \mathfrak{a}_{r} \not\subseteq I^{[p^{e}]}\}.$$

We define

$$\mathcal{C}^{I}_{+}(\mathfrak{a}_{\bullet}) := \limsup_{e \to \infty} \frac{\nu^{I}_{\mathfrak{a}_{\bullet}}(p^{e})}{p^{e}} \text{ and } \mathcal{C}^{I}_{-}(\mathfrak{a}_{\bullet}) := \liminf_{e \to \infty} \frac{\nu^{I}_{\mathfrak{a}_{\bullet}}(p^{e})}{p^{e}}.$$

• If $C_{-}^{I}(\mathfrak{a}_{\bullet}) = C_{+}^{I}(\mathfrak{a}_{\bullet}) < \infty$, then we denote it by $C^{I}(\mathfrak{a}_{\bullet})$ and call it the *F*-threshold of \mathfrak{a}_{\bullet} with respect to *I*.

Existence of $\mathcal{C}^{I}_{\pm}(\mathfrak{a}_{\bullet})$

 $C^I_+(\mathfrak{a}_{\bullet}) < \infty$ if and only if there exists a positive integer M such that $\mathfrak{a}_{Mp^e} \subseteq I^{[p^e]}$ for all $e \gg 0$.

Theorem

Suppose that there exists $N \in \mathbb{N}$ such that $\mathfrak{a}_{Ns} \subseteq I^s$ for all $s \ge 0$. Then

 $0 \leq C_{\pm}^{I}(\mathfrak{a}_{\bullet}) \leq N\mu(I)$. Particularly, if *R* is *F*-pure ring, then $C^{I}(\mathfrak{a}_{\bullet})$ exists and

$$0 \leq \mathcal{C}^{I}(\mathfrak{a}_{\bullet}) = \sup_{e \geq 0} \frac{\nu_{\mathfrak{a}_{\bullet}}^{I}(p^{e})}{p^{e}} \leq N\mu(I).$$

Theorem

If \mathfrak{a}_{\bullet} is a Noetherian filtration with $\sqrt{\mathfrak{a}_{\bullet}} \subseteq \sqrt{I}$, then $0 \leq \mathcal{C}^{I}(\mathfrak{a}_{\bullet}) < \infty$, and it is equal to $r\mathcal{C}^{I}(\mathfrak{a}_{r}^{\bullet})$ for some $r \in \mathbb{N}$.

PROPERTIES OF F-THRESHOLD OF FILTRATIONS

Theorem

Let *I* be a nonzero proper ideal of *R*. Let $\mathfrak{a}_{\bullet} = {\mathfrak{a}_i}_{i\geq 1}$ and $\mathfrak{b}_{\bullet} = {\mathfrak{b}_i}_{i\geq 1}$ be filtrations of ideals in *R*. If $\mathfrak{a}_{\bullet} \leq \mathfrak{b}_{\bullet}$, then $\mathcal{C}_{\pm}^I(\mathfrak{a}_{\bullet}) \leq \mathcal{C}_{\pm}^I(\mathfrak{b}_{\bullet})$. Moreover, if $\mathcal{R}(\mathfrak{b}_{\bullet})$ is a finitely generated $\mathcal{R}(\mathfrak{a}_{\bullet})$ -module, then $\mathcal{C}_{\pm}^I(\mathfrak{a}_{\bullet}) = \mathcal{C}_{\pm}^I(\mathfrak{b}_{\bullet})$.

Corollary

Let *I* be a nonzero proper ideal of *R* and \mathfrak{a}_{\bullet} be a filtration of ideals in *R*.

Suppose that $\mathcal{R}(\overline{\mathfrak{a}_{\bullet}})$ is a finitely generated $\mathcal{R}(\mathfrak{a}_{\bullet})$ -module. Then,

 $\mathcal{C}^{I}_{\pm}(\mathfrak{a}_{\bullet}) = \mathcal{C}^{I}_{\pm}((\mathfrak{a}_{\bullet})^{*}) = \mathcal{C}^{I}_{\pm}(\overline{\mathfrak{a}_{\bullet}}).$

F-THRESHOLD OF SYMBOLIC POWER FILTRATION

We assume that R is a regular ring of positive characteristic p.

Theorem

Let a and I be nonzero proper ideals in R such that $\mathfrak{a} \subseteq \sqrt{I}$. Then $\mathcal{C}^{I}(\mathfrak{a}^{(\bullet)})$ exists, where $\mathfrak{a}^{(\bullet)} = {\mathfrak{a}^{(i)}}_{i\geq 0}$ is the symbolic power filtration of a.

Let $R = \mathbb{K}[x, y, z]$ and $\mathfrak{m} = (x, y, z)$, where \mathbb{K} is a field of characteristic p. Take $\mathfrak{a} = (xy, yz, xz) = (x, y) \cap (y, z) \cap (x, z)$. Then,

$$\mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{(\bullet)}) = \lim_{e \to \infty} \frac{\nu_{\mathfrak{a}^{(\bullet)}}^{\mathfrak{m}}(p^{e})}{p^{e}} = \lim_{e \to \infty} \frac{2(p^{e}-1)}{p^{e}} = 2.$$
$$\mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{\bullet}) = \lim_{e \to \infty} \frac{\nu_{\mathfrak{a}^{\bullet}}^{\mathfrak{m}}(p^{e})}{p^{e}} = \lim_{e \to \infty} \frac{3(p^{e}-1)}{2p^{e}} = \frac{3}{2}.$$

F-THRESHOLD OF SYMBOLIC POWER FILTRATION

Proposition

Let I and a be nonzero proper ideals of R such that $a \subseteq \sqrt{I}$. Then,

$$\mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{(\bullet)}) \leq \mathcal{C}^{\sqrt{I}}(\mathfrak{a}^{(\bullet)}) \leq \mathcal{C}^{\sqrt{\mathfrak{a}}}(\sqrt{\mathfrak{a}}^{(\bullet)}) \leq \textit{big-height}(\sqrt{\mathfrak{a}})$$

for any maximal ideal \mathfrak{m} containing *I*. In particular, $C^{\sqrt{I}}(\mathfrak{a}^{\bullet}) \leq big-height(\sqrt{\mathfrak{a}})$.

Corollary

Let (R, \mathfrak{m}) be a regular local ring and let \mathfrak{a} be a nonzero proper ideal of R. Then,

$$\mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{\bullet}) \leq \mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{(\bullet)}) \leq ht(\mathfrak{a}).$$

Let a_1, \ldots, a_n be positive integers. Let $R = \mathbb{K}[x_1, \ldots, x_n]$ and $\mathfrak{a} = (x_1^{a_1}, \cdots, x_n^{a_n})$. Then, $\mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{(\bullet)}) = \frac{1}{a_1} + \cdots + \frac{1}{a_n}$.

F-threshold of symbolic power filtration

Let $R = \mathbb{K}[x_1, \dots, x_n]$ be a standard graded polynomial ring, where \mathbb{K} is a field of prime characteristic p and $\mathfrak{m} = (x_1, \dots, x_n)$.

Theorem

Let \mathfrak{a}_{\bullet} be a filtration of nonzero proper homogeneous ideals in R. If $\hat{\alpha}(\mathfrak{a}_{\bullet}) > 0$, then

$$\mathcal{C}^{\mathfrak{m}}(\mathfrak{a}_{\bullet}) \leq \frac{n}{\hat{\alpha}(\mathfrak{a}_{\bullet})}.$$

Corollary

Let a be a nonzero proper homogeneous ideal in R. Then,

$$\begin{array}{l} \bullet \quad \mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{\bullet}) \leq \frac{n}{\alpha(\mathfrak{a})}. \\ \\ \bullet \quad \mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{(\bullet)}) \leq \frac{n}{\hat{\alpha}(\mathfrak{a}^{(\bullet)})} \end{array}$$

F-threshold of symbolic power filtration

Let a be a homogeneous radical ideal in R with ht(a) = h. We say that a is F-König if there exists a homogeneous regular sequence f_1, \dots, f_h in a such that $R/(f_1, \dots, f_h)$ is F-pure.

Proposition

Let \mathfrak{a} be a F-König ideal in R. Then,

$$\mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{\bullet}) = \mathcal{C}^{\mathfrak{m}}(\mathfrak{a}^{(\bullet)}) = ht(\mathfrak{a}).$$

Thank you!