Polynomial invariant rings in modular invariant theory

Mandira Mondal (joint with Prof. Manoj Kummini)

Indian Institute of Technology Jodhpur

School on Commutative Algebra and Algebraic Geometry in Prime Characteristics, ICTP, Italy May, 2023

Linear representation of finite group

Let \Bbbk be a field and let V be a finite dimensional \Bbbk -vector space. Let $G \subseteq GL_{\Bbbk}(V)$ be a finite group, i.e., V is a finite dimensional linear representation of G over \Bbbk .

The action of G on V induces an action on V^* . This action extends to a graded k-algebra automorphism on the symmetric algebra of V^* . We denote this algebra by $S = \Bbbk[V]$.

Linear representation of finite group

Let \Bbbk be a field and let V be a finite dimensional \Bbbk -vector space. Let $G \subseteq GL_{\Bbbk}(V)$ be a finite group, i.e., V is a finite dimensional linear representation of G over \Bbbk .

The action of G on V induces an action on V^* . This action extends to a graded k-algebra automorphism on the symmetric algebra of V^* . We denote this algebra by $S = \mathbb{k}[V]$.

The ring of invariants of G is the subring of S given by

$$S^{G} = \{ f \in S \mid g.f = f \text{ for all } g \in G \}.$$

When k is algebraically closed, the invariant ring S^G can be thought of as the coordinate ring of the quotient variety V/G.

Linear representation of finite group

Let \Bbbk be a field and let V be a finite dimensional \Bbbk -vector space. Let $G \subseteq GL_{\Bbbk}(V)$ be a finite group, i.e., V is a finite dimensional linear representation of G over \Bbbk .

The action of *G* on *V* induces an action on *V*^{*}. This action extends to a graded k-algebra automorphism on the symmetric algebra of *V*^{*}. We denote this algebra by S = k[V].

The ring of invariants of G is the subring of S given by

$$S^{\mathsf{G}} = \{ f \in S \mid g.f = f \text{ for all } g \in G \}.$$

When \Bbbk is algebraically closed, the invariant ring S^G can be thought of as the coordinate ring of the quotient variety V/G.

Questions

Question

Can we characterise all representations $G \longrightarrow GL(V)$ for which the invariant ring S^G is a polynomial ring?

Pseudo-reflections

An element $g \in G$ is called a pseudo-reflection if $V^g = \{v \in V \mid gv = v\}$ is a codimension 1 subspace of V.

The action of g is not diagoznaliable if and only if the only eigenvalue of for the action is 1, which can happen only when |G| = 0 in k. In this case, g is called a transvection.

Theorem (Shephard-Todd, Chevally, Serre)

Suppose |G| is invertible in \mathbb{k} . Then S^G is a polynomial ring if and only if G is generated by pseudo-reflections.

Pseudo-reflections

An element $g \in G$ is called a pseudo-reflection if $V^g = \{v \in V \mid gv = v\}$ is a codimension 1 subspace of V.

The action of g is not diagoznaliable if and only if the only eigenvalue of for the action is 1, which can happen only when |G| = 0 in k. In this case, g is called a transvection.

Theorem (Shephard-Todd, Chevally, Serre)

Suppose |G| is invertible in \mathbb{k} . Then S^G is a polynomial ring if and only if G is generated by pseudo-reflections.

Such a characterisation is not known for the modular case, i.e., when |G| is divisible by characteristic of \Bbbk . However, a partial converse is true for any representation.

Theorem (Serre 1967)

If S^G is a polynomial ring then the action of G on V is generated by pseudo-reflections.

Pseudo-reflections

An element $g \in G$ is called a pseudo-reflection if $V^g = \{v \in V \mid gv = v\}$ is a codimension 1 subspace of V.

The action of g is not diagoznaliable if and only if the only eigenvalue of for the action is 1, which can happen only when |G| = 0 in k. In this case, g is called a transvection.

Theorem (Shephard-Todd, Chevally, Serre)

Suppose |G| is invertible in \mathbb{k} . Then S^G is a polynomial ring if and only if G is generated by pseudo-reflections.

Such a characterisation is not known for the modular case, i.e., when |G| is divisible by characteristic of \Bbbk . However, a partial converse is true for any representation.

Theorem (Serre 1967)

If S^G is a polynomial ring then the action of G on V is generated by pseudo-reflections.

The Trace map

- The transfer homomorphism $\operatorname{Tr}^{G} : S \longrightarrow S^{G}$ given by $f \mapsto \sum_{g \in G} g.f$ is a map of S^{G} -modules.
- If |G| is invertible in k, then the Reynold's operator ¹/_{|G|} Tr^G is a projection of S onto S^G. Hence S^G is a direct summand of S as an S^G-module.

Theorem (Shank-Wehlau 1999)

If char(\Bbbk) divides |G|, then the image of the trace map Tr^{G} is a non-zero proper ideal of S^{G} , contained in the ideal generted by the homogeneous invariants of positive degree.

The Trace map

- The transfer homomorphism $\operatorname{Tr}^{G} : S \longrightarrow S^{G}$ given by $f \mapsto \sum_{g \in G} g.f$ is a map of S^{G} -modules.
- If |G| is invertible in k, then the Reynold's operator ¹/_{|G|} Tr^G is a projection of S onto S^G. Hence S^G is a direct summand of S as an S^G-module.

Theorem (Shank-Wehlau 1999)

If char(\Bbbk) divides |G|, then the image of the trace map Tr^{G} is a non-zero proper ideal of S^{G} , contained in the ideal generted by the homogeneous invariants of positive degree.

Conjecture (Shank-Wehlau 1999)

Suppose char(\mathbb{k}) = p > 0 and $G \subseteq GL(V)$ a p-group. Then S^G is a polynomial ring \Leftrightarrow image of the Transfer homomorphism Tr^G is a principal ideal of S^G .

The Trace map

- The transfer homomorphism $\operatorname{Tr}^{G} : S \longrightarrow S^{G}$ given by $f \mapsto \sum_{g \in G} g.f$ is a map of S^{G} -modules.
- If |G| is invertible in k, then the Reynold's operator ¹/_{|G|} Tr^G is a projection of S onto S^G. Hence S^G is a direct summand of S as an S^G-module.

Theorem (Shank-Wehlau 1999)

If char(\Bbbk) divides |G|, then the image of the trace map Tr^{G} is a non-zero proper ideal of S^{G} , contained in the ideal generted by the homogeneous invariants of positive degree.

Conjecture (Shank-Wehlau 1999)

Suppose char(\mathbb{k}) = p > 0 and $G \subseteq GL(V)$ a p-group. Then S^G is a polynomial ring \Leftrightarrow image of the Transfer homomorphism Tr^G is a principal ideal of S^G .

Broer's reformulation

 $R \hookrightarrow S$ a integral extension of integral domains. K, L are fraction fields of R and S, respectively. $K \hookrightarrow L$ is finite separable. For $y \in L$, multiplication by $y, L \xrightarrow{\cdot y} L$ is a K-linear map. We denote its trace by $\operatorname{Tr}_{L/K}(y)$.

Then R is a direct summand of $S \Leftrightarrow$ there exists a non-zero principal ideal of S which is mapped by trace map $\text{Tr}_{L/K}$ onto a principal ideal of R.

Suppose char(\Bbbk) = p > 0 and $G \subseteq GL(V)$ a p-group. Then S^G is a direct summand of $S \Leftrightarrow$ image of the Transfer homomorphism Tr^G is a principal ideal of S^G . In that case, G is generated by pseudo-reflections.

Broer's reformulation

 $R \hookrightarrow S$ a integral extension of integral domains. K, L are fraction fields of R and S, respectively. $K \hookrightarrow L$ is finite separable. For $y \in L$, multiplication by $y, L \xrightarrow{\cdot y} L$ is a K-linear map. We denote its trace by $\operatorname{Tr}_{L/K}(y)$.

Then R is a direct summand of $S \Leftrightarrow$ there exists a non-zero principal ideal of S which is mapped by trace map $\text{Tr}_{L/K}$ onto a principal ideal of R.

Suppose char(\Bbbk) = p > 0 and $G \subseteq GL(V)$ a p-group. Then S^G is a direct summand of $S \Leftrightarrow$ image of the Transfer homomorphism Tr^G is a principal ideal of S^G . In that case, G is generated by pseudo-reflections.

Conjecture (Shank-Wehlau-Broer)

Suppose char(\mathbb{k}) = p > 0 and $G \subseteq GL(V)$ a p-group. If S^G is a direct summand of S, then S^G is a polynomial ring.

Broer's reformulation

 $R \hookrightarrow S$ a integral extension of integral domains. K, L are fraction fields of R and S, respectively. $K \hookrightarrow L$ is finite separable. For $y \in L$, multiplication by $y, L \xrightarrow{\cdot y} L$ is a K-linear map. We denote its trace by $\operatorname{Tr}_{L/K}(y)$.

Then R is a direct summand of $S \Leftrightarrow$ there exists a non-zero principal ideal of S which is mapped by trace map $\text{Tr}_{L/K}$ onto a principal ideal of R.

Suppose char(\Bbbk) = p > 0 and $G \subseteq GL(V)$ a p-group. Then S^G is a direct summand of $S \Leftrightarrow$ image of the Transfer homomorphism Tr^G is a principal ideal of S^G . In that case, G is generated by pseudo-reflections.

Conjecture (Shank-Wehlau-Broer)

Suppose char(\mathbb{k}) = p > 0 and $G \subseteq GL(V)$ a p-group. If S^G is a direct summand of S, then S^G is a polynomial ring.

Nakajima group: class of *p*-groups generated by pseudoreflections.

Theorem (Nakajima 1980)

If G is a Nakajima group then S^G is a polynomial ring. Suppose $\mathbb{k} = \mathbb{F}_p$. Then S^G is a polynomial ring \Rightarrow G is a Nakajima group. However, Nakajima's proof cannot be naively extended to bigger fields.

Shank-Wehlau-Broer conjecture holds if

- 1. (Shank-Wehlau 1999) $G \subseteq \operatorname{GL}_{\Bbbk}(V)$ is a Nakajima group.
- 2. (Broer 2010) *G* is an abelian *p*-group.
- 3. (Braun 2022) dim_k(V) = 3.

Nakajima group: class of *p*-groups generated by pseudoreflections.

Theorem (Nakajima 1980)

If G is a Nakajima group then S^G is a polynomial ring. Suppose $\mathbb{k} = \mathbb{F}_p$. Then S^G is a polynomial ring \Rightarrow G is a Nakajima group. However, Nakajima's proof cannot be naively extended to bigger fields.

Shank-Wehlau-Broer conjecture holds if

- 1. (Shank-Wehlau 1999) $G \subseteq GL_{\Bbbk}(V)$ is a Nakajima group.
- 2. (Broer 2010) *G* is an abelian *p*-group.
- 3. (Braun 2022) $\dim_{\Bbbk}(V) = 3$.

Generalised Nakajima group: a class of *p*-groups which contains the Nakajima groups as a proper subset and representations $G \subseteq GL_{k}(V)$ not generated by pseudoreflections.

Nakajima group: class of *p*-groups generated by pseudoreflections.

Theorem (Nakajima 1980)

If G is a Nakajima group then S^G is a polynomial ring. Suppose $\mathbb{k} = \mathbb{F}_p$. Then S^G is a polynomial ring \Rightarrow G is a Nakajima group. However, Nakajima's proof cannot be naively extended to bigger fields.

Shank-Wehlau-Broer conjecture holds if

- 1. (Shank-Wehlau 1999) $G \subseteq GL_{\Bbbk}(V)$ is a Nakajima group.
- 2. (Broer 2010) G is an abelian p-group.
- 3. (Braun 2022) dim_k(V) = 3.

Generalised Nakajima group: a class of *p*-groups which contains the Nakajima groups as a proper subset and representations $G \subseteq GL_{k}(V)$ not generated by pseudoreflections.

Theorem (Kummini-M)

Shank-Wehlau-Broer conjecture holds in the following cases:

- 1. G is a Generalised Nakajima group.
- 2. $\mathbb{k} = \mathbb{F}_p$ and $\dim_{\mathbb{k}}(V) = 4$.

3.
$$|G| = p^3$$
.

The **Hilbert ideal** $\mathfrak{h}_{G,S} = (S^G)_+ S$ is the ideal of *S* generated by positive degree invariants.

Theorem (Kummini-M, 2022)

Let $G \subseteq GL_{\Bbbk}(V)$ be a Generalised Nakajima group. Suppose dim_k(V) = n. Then the Hilbert ideal $\mathfrak{h}_{G,S} = (f_1, \ldots, f_n)$ where $f_i \in (S^G)_+$ and deg $(f_i) \leq |G|$ for each $i = 1, \ldots, n$.

This proves a conjecture of Derksen and Kemper for Generalised Nakajima groups.

Theorem (Kummini-M)

Shank-Wehlau-Broer conjecture holds in the following cases:

- 1. G is a Generalised Nakajima group.
- 2. $\mathbb{k} = \mathbb{F}_p$ and dim $_{\mathbb{k}}(V) = 4$. 3. $|G| = p^3$.

The **Hilbert ideal** $\mathfrak{h}_{G,S} = (S^G)_+ S$ is the ideal of *S* generated by positive degree invariants.

Theorem (Kummini-M, 2022)

Let $G \subseteq GL_{\Bbbk}(V)$ be a Generalised Nakajima group. Suppose $\dim_{\Bbbk}(V) = n$. Then the Hilbert ideal $\mathfrak{h}_{G,S} = (f_1, \ldots, f_n)$ where $f_i \in (S^G)_+$ and $\deg(f_i) \leq |G|$ for each $i = 1, \ldots, n$.

This proves a conjecture of Derksen and Kemper for Generalised Nakajima groups.

Hilbert ideal

Let $W \subseteq V^G$ be a subspace; $W^{\perp} = \ker(V^* \to W^*)$, i.e., the subspace of linear forms on V that vanish on W. The Hilbert ideal of G in S relative to $W := \mathfrak{h}_{G,S,W} := (W^{\perp}S \cap S^G)S$.

We show that $\mathfrak{h}_{G,S,W} = (\mathfrak{h}_{G,S,W} \cap \operatorname{Sym}(W^{\perp}))S$.

Theorem (Kummini-M, -)

Suppose dim_k(V^G) \geq dim_k(V) – 2. Then the Hilbert ideal $\mathfrak{h}_{G,S}$ is a complete intersection.

Theorem (Hilbert)

Suppose S^G is a direct summand of S and suppose $f_1, \ldots, f_n \in S^G$ homogeneous invariants of positive degree such that $\mathfrak{h}_{G,S} = (f_1, \ldots, f_n)$. Then $S^G = \mathbb{k}[f_1, \ldots, f_n]$.

Hilbert ideal

Let $W \subseteq V^G$ be a subspace; $W^{\perp} = \ker(V^* \to W^*)$, i.e., the subspace of linear forms on V that vanish on W. The Hilbert ideal of G in S relative to $W := \mathfrak{h}_{G,S,W} := (W^{\perp}S \cap S^G)S$.

We show that $\mathfrak{h}_{G,S,W} = (\mathfrak{h}_{G,S,W} \cap \operatorname{Sym}(W^{\perp}))S$.

Theorem (Kummini-M, -)

Suppose dim_k(V^G) \geq dim_k(V) - 2. Then the Hilbert ideal $\mathfrak{h}_{G,S}$ is a complete intersection.

Theorem (Hilbert)

Suppose S^G is a direct summand of S and suppose $f_1, \ldots, f_n \in S^G$ homogeneous invariants of positive degree such that $\mathfrak{h}_{G,S} = (f_1, \ldots, f_n)$. Then $S^G = \Bbbk[f_1, \ldots, f_n]$.

Representation of p-groups in characteristic p > 0

Suppose char(\Bbbk) = p > 0, $G \subseteq GL(V)$ a p-group generated by transvections.

G has a composition series of $0 = G_0 \subsetneq G_1 \subsetneq \cdots \subsetneq G_k = G$ such that G_l is a transvection group and G_l/G_{l-1} is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ and is generated by the residue class of a transvection.

Compare $\mathfrak{h}_{G',S,W}$ and $\mathfrak{h}_{G,S,W}$ when $G' \leq G$ are transvection *p*-groups and $G/G' \simeq \mathbb{Z}/p\mathbb{Z}$.

If $\mathbb{k} = \mathbb{F}_p$ and rank(V) = 4, then for any $G' \leq G$ as above we have rank $(V^{G'}) \geq \operatorname{rank}(V) - 2 \implies \mathfrak{h}_{G',S,W}$ is a complete intersection $\implies \mathfrak{h}_{G,S,W}$ is a complete intersection $\implies \mathfrak{h}_{G,S}$ is a complete intersection.

Representation of p-groups in characteristic p > 0

Suppose char(\Bbbk) = p > 0, $G \subseteq GL(V)$ a p-group generated by transvections.

G has a composition series of $0 = G_0 \subsetneq G_1 \subsetneq \cdots \subsetneq G_k = G$ such that G_l is a transvection group and G_l/G_{l-1} is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ and is generated by the residue class of a transvection.

Compare $\mathfrak{h}_{G',S,W}$ and $\mathfrak{h}_{G,S,W}$ when $G' \leq G$ are transvection *p*-groups and $G/G' \simeq \mathbb{Z}/p\mathbb{Z}$.

If $\mathbb{k} = \mathbb{F}_p$ and rank(V) = 4, then for any $G' \leq G$ as above we have rank $(V^{G'}) \geq \operatorname{rank}(V) - 2 \implies \mathfrak{h}_{G',S,W}$ is a complete intersection $\implies \mathfrak{h}_{G,S,W}$ is a complete intersection $\implies \mathfrak{h}_{G,S}$ is a complete intersection.

References

- A. Broer. The direct summand property in modular invariant theory. Transform. Groups, 10(1):5–27, 2005.
- A. Broer. Hypersurfaces in modular invariant theory. J. Algebra, 306(2):576–590, 2006.
- J. Elmer and M. Sezer. *Locally finite derivations and modular coinvariants Q. J. Math.*, 69(3):1053–106, 2016.
- M. Kummini and M. Mondal. *On Hilbert ideals of p-groups in characteristic p. Proc. Amer. Math. Soc.* 150 (1): 145-151, 2022.
- M. Kummini and M. Mondal. Polynomial invariant rings in modular invariant theory. https://arxiv.org/abs/2210.05945.
- R. J. Shank and D. L. Wehlau. The transfer in modular invariant theory. J. Pure Appl. Algebra, 142(1):63–77, 1999.

Thank you for your attention.