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Linear representation of finite group

Let k be a field and let V be a finite dimensional k-vector space.
Let G ⊆ GLk(V ) be a finite group, i.e., V is a finite dimensional
linear representation of G over k.

The action of G on V induces an action on V ∗. This action
extends to a graded k-algebra automorphism on the symmetric
algebra of V ∗. We denote this algebra by S = k[V ].

The ring of invariants of G is the subring of S given by

SG = {f ∈ S | g .f = f for all g ∈ G}.

When k is algebraically closed, the invariant ring SG can be
thought of as the coordinate ring of the quotient variety V /G .
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Questions

Question
Can we characterise all representations G −→ GL(V ) for which the
invariant ring SG is a polynomial ring?



Pseudo-reflections

An element g ∈ G is called a pseudo-reflection if
V g = {v ∈ V | gv = v} is a codimension 1 subspace of V .
The action of g is not diagoznaliable if and only if the only
eigenvalue of for the action is 1, which can happen only when
|G | = 0 in k. In this case, g is called a transvection.

Theorem (Shephard-Todd, Chevally, Serre)
Suppose |G | is invertible in k. Then SG is a polynomial ring if and
only if G is generated by pseudo-reflections.

Such a characterisation is not known for the modular case, i.e.,
when |G | is divisible by characteristic of k. However, a partial
converse is true for any representation.

Theorem (Serre 1967)
If SG is a polynomial ring then the action of G on V is generated
by pseudo-reflections.
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The Trace map

▶ The transfer homomorphism TrG : S −→ SG given by
f 7→

∑
g∈G g .f is a map of SG -modules.

▶ If |G | is invertible in k, then the Reynold’s operator 1
|G| TrG is

a projection of S onto SG . Hence SG is a direct summand of
S as an SG -module.

Theorem (Shank-Wehlau 1999)
If char(k) divides |G |, then the image of the trace map TrG is a
non-zero proper ideal of SG , contained in the ideal generted by the
homogeneous invariants of positive degree.

Conjecture (Shank-Wehlau 1999)
Suppose char(k) = p > 0 and G ⊆ GL(V ) a p-group. Then SG is
a polynomial ring ⇔ image of the Transfer homomorphism TrG is
a principal ideal of SG .
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Broer’s reformulation

R ↪→ S a integral extension of integral domains. K , L are fraction
fields of R and S, respectively. K ↪→ L is finite seperable. For
y ∈ L, multiplication by y , L .y−→ L is a K -linear map. We denote
its trace by TrL/K (y).
Then R is a direct summand of S ⇔ there exists a non-zero
principal ideal of S which is mapped by trace map TrL/K onto a
principal ideal of R.

Suppose char(k) = p > 0 and G ⊆ GL(V ) a p-group. Then SG is
a direct summand of S ⇔ image of the Transfer homomorphism
TrG is a principal ideal of SG . In that case, G is generated by
pseudo-reflections.

Conjecture (Shank-Wehlau-Broer)
Suppose char(k) = p > 0 and G ⊆ GL(V ) a p-group. If SG is a
direct summand of S, then SG is a polynomial ring.
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Polynomial invariant rings

Nakajima group: class of p-groups generated by pseudoreflections.

Theorem (Nakajima 1980)
If G is a Nakajima group then SG is a polynomial ring. Suppose
k = Fp. Then SG is a polynomial ring ⇒ G is a Nakajima group.
However, Nakajima’s proof cannot be naively extended to bigger
fields.

Shank-Wehlau-Broer conjecture holds if
1. (Shank-Wehlau 1999) G ⊆ GLk(V ) is a Nakajima group.
2. (Broer 2010) G is an abelian p-group.
3. (Braun 2022) dimk(V ) = 3.

Generalised Nakajima group: a class of p-groups which contains
the Nakajima groups as a proper subset and representations
G ⊆ GLk(V ) not generated by pseudoreflections.
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Polynomial invariant rings

Theorem (Kummini-M)
Shank-Wehlau-Broer conjecture holds in the following cases:

1. G is a Generalised Nakajima group.
2. k = Fp and dimk(V ) = 4.
3. |G | = p3.

The Hilbert ideal hG,S = (SG)+S is the ideal of S generated by
positive degree invariants.

Theorem (Kummini-M, 2022)
Let G ⊆ GLk(V ) be a Generalised Nakajima group. Suppose
dimk(V ) = n. Then the Hilbert ideal hG,S = (f1, . . . , fn) where
fi ∈ (SG)+ and deg(fi) ≤ |G | for each i = 1, . . . , n.

This proves a conjecture of Derksen and Kemper for Generalised
Nakajima groups.
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Hilbert ideal

Let W ⊆ V G be a subspace; W ⊥ = ker(V ∗ → W ∗), i.e., the
subspace of linear forms on V that vanish on W . The Hilbert ideal
of G in S relative to W := hG,S,W := (W ⊥S ∩ SG)S.

We show that hG,S,W = (hG,S,W ∩ Sym(W ⊥))S.

Theorem (Kummini-M, –)
Suppose dimk(V G) ≥ dimk(V ) − 2. Then the Hilbert ideal hG,S is
a complete intersection.

Theorem (Hilbert)
Suppose SG is a direct summand of S and suppose f1, . . . , fn ∈ SG

homogeneous invariants of positive degree such that
hG,S = (f1, . . . , fn). Then SG = k[f1, . . . , fn].
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Representation of p-groups in characteristic p > 0

Suppose char(k) = p > 0, G ⊆ GL(V ) a p-group generated by
transvections.

G has a composition series of 0 = G0 ⊊ G1 ⊊ · · · ⊊ Gk = G such
that Gl is a transvection group and Gl/Gl−1 is isomorphic to Z/pZ
and is generated by the residue class of a transvection.

Compare hG ′,S,W and hG,S,W when G ′ ≤ G are transvection
p-groups and G/G ′ ≃ Z/pZ.

If k = Fp and rank(V ) = 4, then for any G ′ ≤ G as above we have
rank(V G ′) ≥ rank(V ) − 2 =⇒ hG ′,S,W is a complete intersection
=⇒ hG,S,W is a complete intersection =⇒ hG,S is a complete
intersection.
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