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Epsilon multiplicity

Suppose that (R,m) is a Noetherian local ring of dimension d and I is
an ideal in R. The ε-multiplicity of I is defined to be

ε(I) := lim sup
n→∞

d!

nd
lR
(
H0

m (R/In)
)

= lim sup
n→∞

d!

nd
lR

(
In : Rm

∞

In

)
This definition is due to Kleiman, Ulrich and Validashti. The
invariant ε(I) is always finite. If I is m-primary then ε(I) = e(I).



Properties of epsilon multiplicity

Theorem (Katz and Validashti)
Suppose that (R,m) is a Noetherian local ring and I is an ideal of R.
Then ε(I) > 0 if and only if I has maximal analytic spread.

Theorem (Katz and Validashti)
Suppose that R is a locally quasi-unmixed Noetherian ring and J ⊆ I
be two ideals in R. Then J = I if and only if ε(IP ) = ε(JP ) for all
P ∈ Spec(R).



When does epsilon multiplicity exist as a limit?

Theorem (Cutkosky)
Suppose that (R,m) is an analytically unramified Noetherian local ring
and I is an ideal in R. Then ε(I) exists as a limit.

In general, the associated function

n 7→ lR
(
H0

m (R/In)
)

may not exhibit any polynomial-like behaviour.

Example (Cutkosky, Hà, Srinivasan and Theodorescu)
Suppose that R = C[[X,Y, Z,W ]]. Then there exists a height two
prime ideal I in R such that ε(I) is a positive irrational number.



A density function for saturated powers of an ideal

Theorem ( , Roy and Trivedi)
Let k be a perfect field of characteristic p > 0 and let R =

⊕
m≥0 Rm

be a standard graded Noetherian k-algebra with graded maximal ideal
m =

⊕
m≥1 Rm. Further assume that R is a domain of dimension d

and depth Rm ≥ 2. Let I ⊆ R be a graded ideal. Then the limit

gI(x) := lim
s→∞

dimk

(
Ip

s

: Rm
∞)

⌊xps⌋

ps(d−1)

exists for every x ∈ R≥0. Moreover, gI : R≥0 → R≥0 is a continuous
function and

c∫
0

gI(x)dx = lim
s→∞

∑cps

m=0 dimk

(
Ip

s

: Rm
∞)

m

psd

for all integers c > 0.



A density function for usual powers of an ideal

Theorem ( , Roy and Trivedi)
Let k be a field and let R =

⊕
m≥0 Rm be a standard graded

Noetherian k-algebra. Further assume that R is a domain of
dimension d ≥ 1. Let I ⊆ R be a graded ideal. Then the limit

fI(x) := lim
n→∞

dimk (I
n)⌊xn⌋

nd−1

exists for every x ∈ R≥0. Moreover, the function fI : R≥0 → R≥0 is a
piecewise polynomial and

c∫
0

fI(x)dx = lim
n→∞

∑cn
m=0 dimk (I

n)m
nd

for all integers c > 0.



A density function for epsilon multiplicity

Corollary ( , Roy and Trivedi)
Let k be a perfect field of characteristic p > 0 and let R =

⊕
m≥0 Rm

be a standard graded Noetherian k-algebra with graded maximal ideal
m =

⊕
m≥1 Rm. Further assume that R is a domain of dimension d

and depth Rm ≥ 2. Let I ⊆ R be a graded ideal. Then the limit

εI(x) := lim
s→∞

dimk

(
H0

m

(
R/Ip

s))
⌊xps⌋

ps(d−1)

exists for every x ∈ R≥0. Moreover, the function εI : R≥0 → R≥0 is
compactly supported, continuous everywhere except for finitely many
values of x and

d!

∞∫
0

εI(x)dx = lim
s→∞

ℓR
(
H0

m

(
R/Ip

s))
psd/d!

= ε(I).



A proof sketch of the corollary

By Swanson’s theorem there exists an integer c > 0 such that

(In : Rm
∞)m = (In)m

for all integers n > 0 and m > cn. Therefore,

ℓR

(
H0

m

(
R/Ip

s
))

=

cps∑
m=0

dimk

(
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s

: Rm
∞
)
m
−
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(
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s
)
m
.

After dividing by psd and taking limits, we obtain

ε(I) = d!

c∫
0

gI(x)dx− d!

c∫
0

fI(x)dx.

Then εI(x) := gI(x)− fI(x) satisfies the conclusions of our corollary.



Integral closures and epsilon density functions

Proposition ( , Roy and Trivedi)
Let k be a perfect field of characteristic p > 0 and let R =

⊕
m≥0 Rm

be a standard graded Noetherian k-algebra with graded maximal ideal
m =

⊕
m≥1 Rm. Further assume that R is a domain of dimension d

and depth Rm ≥ 2. Let J ⊆ I be a graded inclusion of graded ideals
such that J = I. Then

εI(x) = εJ(x)

for all x ∈ R≥0.



Epsilon multiplicity in graded dimension two

Theorem ( -Dubey-Roy-Verma and -Roy-Trivedi)
Let k be an algebraically closed field of characteristic zero and let
R =

⊕
m≥0 Rm be a standard graded Noetherian k-algebra with graded

maximal ideal m =
⊕

m≥1 Rm. Further assume that R is a two
dimensional Cohen-Macaulay domain. Let I ⊆ R be a graded ideal.
Then the limit

εI(x) := lim
s→∞

dimk

(
H0

m (R/In)
)
⌊xn⌋

nd−1

exists for every x ∈ R≥0. Moreover, the function εI : R≥0 → R≥0 is
compactly supported, piecewise polynomial and

d!

∞∫
0

εI(x)dx = lim
s→∞

ℓR
(
H0

m (R/In)
)

nd/d!
= ε(I)

is a rational number.



Fat points on projectively normal curves

Example (Rees)

Suppose that R =
C[X,Y, Z]

(X3 + Y 3 + Z3)
with graded maximal ideal m.

Then there exist height one graded prime ideal P in R such that the
saturated Rees algebra

⊕
n≥0(P

n : Rm
∞) is non-Noetherian.

Example ( , Dubey, Roy and Verma)

Suppose that R =
C[X,Y, Z]

(Xe + Y e + Ze)
where e ≥ 3 is an integer.

Consider the graded ideal I = P a1
1 ∩ · · · ∩ P ar

r where P1, . . . , Pr are r
distict height one graded prime ideals in R and a1, . . . , ar are positive
integers. Then

ε(I) =

(
r∑

i=1

ai

)2(
e− 2 +

1

e

)
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