# Epsilon multiplicity in graded dimension two and density functions

Suprajo Das

#### Indian Institute of Technology, Bombay, India

School on Commutative Algebra and Algebraic Geometry in Prime Characteristics, ICTP, Italy

May 3, 2023

## Epsilon multiplicity

Suppose that  $(R, \mathfrak{m})$  is a Noetherian local ring of dimension d and I is an ideal in R. The  $\varepsilon$ -multiplicity of I is defined to be

$$\varepsilon(I) := \limsup_{n \to \infty} \frac{d!}{n^d} l_R \left( H^0_{\mathfrak{m}} \left( R/I^n \right) \right)$$
$$= \limsup_{n \to \infty} \frac{d!}{n^d} l_R \left( \frac{I^n \colon_R \mathfrak{m}^\infty}{I^n} \right)$$

This definition is due to Kleiman, Ulrich and Validashti. The invariant  $\varepsilon(I)$  is always finite. If I is **m**-primary then  $\varepsilon(I) = e(I)$ .

## Properties of epsilon multiplicity

#### Theorem (Katz and Validashti)

Suppose that  $(R, \mathfrak{m})$  is a Noetherian local ring and I is an ideal of R. Then  $\varepsilon(I) > 0$  if and only if I has maximal analytic spread.

#### Theorem (Katz and Validashti)

Suppose that R is a locally quasi-unmixed Noetherian ring and  $J \subseteq I$ be two ideals in R. Then  $\overline{J} = \overline{I}$  if and only if  $\varepsilon(I_P) = \varepsilon(J_P)$  for all  $P \in \operatorname{Spec}(R)$ .

### Theorem (Cutkosky)

Suppose that  $(R, \mathfrak{m})$  is an analytically unramified Noetherian local ring and I is an ideal in R. Then  $\varepsilon(I)$  exists as a limit.

In general, the associated function

 $n \mapsto l_R \left( H^0_{\mathfrak{m}} \left( R/I^n \right) \right)$ 

may not exhibit any polynomial-like behaviour.

Example (Cutkosky, Hà, Srinivasan and Theodorescu) Suppose that  $R = \mathbb{C}[[X, Y, Z, W]]$ . Then there exists a height two prime ideal I in R such that  $\varepsilon(I)$  is a positive irrational number.

## A density function for saturated powers of an ideal

#### Theorem $(_, Roy and Trivedi)$

Let k be a perfect field of characteristic p > 0 and let  $R = \bigoplus_{m \ge 0} R_m$ be a standard graded Noetherian k-algebra with graded maximal ideal  $\mathfrak{m} = \bigoplus_{m \ge 1} R_m$ . Further assume that R is a domain of dimension d and depth  $R_{\mathfrak{m}} \ge 2$ . Let  $I \subseteq R$  be a graded ideal. Then the limit

$$g_I(x) := \lim_{s \to \infty} \frac{\dim_k \left( I^{p^s} : {}_R \mathfrak{m}^{\infty} \right)_{\lfloor x p^s \rfloor}}{p^{s(d-1)}}$$

exists for every  $x \in \mathbb{R}_{\geq 0}$ . Moreover,  $g_I \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  is a continuous function and

$$\int_{0}^{c} g_{I}(x)dx = \lim_{s \to \infty} \frac{\sum_{m=0}^{cp^{s}} \dim_{k} \left(I^{p^{s}} \colon_{R} \mathfrak{m}^{\infty}\right)_{m}}{p^{sd}}$$

for all integers c > 0.

## A density function for usual powers of an ideal

#### Theorem (\_ , Roy and Trivedi)

Let k be a field and let  $R = \bigoplus_{m \ge 0} R_m$  be a standard graded Noetherian k-algebra. Further assume that R is a domain of dimension  $d \ge 1$ . Let  $I \subseteq R$  be a graded ideal. Then the limit

$$f_I(x) := \lim_{n \to \infty} \frac{\dim_k (I^n)_{\lfloor xn \rfloor}}{n^{d-1}}$$

exists for every  $x \in \mathbb{R}_{\geq 0}$ . Moreover, the function  $f_I \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  is a piecewise polynomial and

$$\int_{0}^{c} f_{I}(x)dx = \lim_{n \to \infty} \frac{\sum_{m=0}^{cn} \dim_{k} (I^{n})_{m}}{n^{d}}$$

for all integers c > 0.

A density function for epsilon multiplicity

#### Corollary (\_ , Roy and Trivedi)

Let k be a perfect field of characteristic p > 0 and let  $R = \bigoplus_{m \ge 0} R_m$ be a standard graded Noetherian k-algebra with graded maximal ideal  $\mathfrak{m} = \bigoplus_{m \ge 1} R_m$ . Further assume that R is a domain of dimension d and depth  $R_{\mathfrak{m}} \ge 2$ . Let  $I \subseteq R$  be a graded ideal. Then the limit

$$\varepsilon_I(x) := \lim_{s \to \infty} \frac{\dim_k \left( H^0_{\mathfrak{m}} \left( R/I^{p^s} \right) \right)_{\lfloor xp^s \rfloor}}{p^{s(d-1)}}$$

exists for every  $x \in \mathbb{R}_{\geq 0}$ . Moreover, the function  $\varepsilon_I \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  is compactly supported, continuous everywhere except for finitely many values of x and

$$d! \int_{0}^{\infty} \varepsilon_{I}(x) dx = \lim_{s \to \infty} \frac{\ell_{R} \left( H^{0}_{\mathfrak{m}} \left( R/I^{p^{s}} \right) \right)}{p^{sd}/d!} = \varepsilon(I).$$

### A proof sketch of the corollary

By Swanson's theorem there exists an integer c > 0 such that

$$(I^n \colon {}_R \mathfrak{m}^\infty)_m = (I^n)_m$$

for all integers n > 0 and m > cn. Therefore,

$$\ell_R\left(H^0_{\mathfrak{m}}\left(R/I^{p^s}\right)\right) = \sum_{m=0}^{cp^s} \dim_k\left(I^{p^s}\colon_R\mathfrak{m}^\infty\right)_m - \sum_{m=0}^{cp^s} \dim_k\left(I^{p^s}\right)_m$$

After dividing by  $p^{sd}$  and taking limits, we obtain

$$\varepsilon(I) = d! \int_{0}^{c} g_I(x) dx - d! \int_{0}^{c} f_I(x) dx.$$

Then  $\varepsilon_I(x) := g_I(x) - f_I(x)$  satisfies the conclusions of our corollary.

### Proposition $(\_, Roy and Trivedi)$

Let k be a perfect field of characteristic p > 0 and let  $R = \bigoplus_{m \ge 0} R_m$ be a standard graded Noetherian k-algebra with graded maximal ideal  $\mathfrak{m} = \bigoplus_{m \ge 1} R_m$ . Further assume that R is a domain of dimension d and depth  $R_{\mathfrak{m}} \ge 2$ . Let  $J \subseteq I$  be a graded inclusion of graded ideals such that  $\overline{J} = \overline{I}$ . Then

$$\varepsilon_I(x) = \varepsilon_J(x)$$

for all  $x \in \mathbb{R}_{\geq 0}$ .

### Epsilon multiplicity in graded dimension two

Theorem (\_-Dubey-Roy-Verma and \_-Roy-Trivedi)

Let k be an algebraically closed field of characteristic zero and let  $R = \bigoplus_{m \ge 0} R_m$  be a standard graded Noetherian k-algebra with graded maximal ideal  $\mathfrak{m} = \bigoplus_{m \ge 1} R_m$ . Further assume that R is a two dimensional Cohen-Macaulay domain. Let  $I \subseteq R$  be a graded ideal. Then the limit

$$\varepsilon_I(x) := \lim_{s \to \infty} \frac{\dim_k \left( H^0_{\mathfrak{m}} \left( R/I^n \right) \right)_{\lfloor xn \rfloor}}{n^{d-1}}$$

exists for every  $x \in \mathbb{R}_{\geq 0}$ . Moreover, the function  $\varepsilon_I \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  is compactly supported, piecewise polynomial and

$$d! \int_{0}^{\infty} \varepsilon_{I}(x) dx = \lim_{s \to \infty} \frac{\ell_{R} \left( H_{\mathfrak{m}}^{0} \left( R/I^{n} \right) \right)}{n^{d}/d!} = \varepsilon(I)$$

is a rational number.

### Fat points on projectively normal curves

Example (Rees) Suppose that  $R = \frac{\mathbb{C}[X, Y, Z]}{(X^3 + Y^3 + Z^3)}$  with graded maximal ideal  $\mathfrak{m}$ . Then there exist height one graded prime ideal P in R such that the saturated Rees algebra  $\bigoplus_{n>0} (P^n : R\mathfrak{m}^\infty)$  is non-Noetherian.

Example (., Dubey, Roy and Verma) Suppose that  $R = \frac{\mathbb{C}[X, Y, Z]}{(X^e + Y^e + Z^e)}$  where  $e \ge 3$  is an integer. Consider the graded ideal  $I = P_1^{a_1} \cap \cdots \cap P_r^{a_r}$  where  $P_1, \ldots, P_r$  are rdistict height one graded prime ideals in R and  $a_1, \ldots, a_r$  are positive integers. Then

$$\varepsilon(I) = \left(\sum_{i=1}^{r} a_i\right)^2 \left(e - 2 + \frac{1}{e}\right).$$

S. D. Cutkosky.

Poincaré series of line bundles on varieties.

A Tribute to C.S. Sheshadri: Perspectives in Geometry and Representation Theory, pages 147–158, 2003.

#### S. D. Cutkosky.

Asymptotic multiplicities of graded families of ideals and linear series.

Advances in Mathematics, 264:55–113, 2014.

- S. D. Cutkosky, H. T. Hà, H. Srinivasan, and E. Theodorescu. Asymptotic behavior of the length of local cohomology. *Canadian Journal of Mathematics*, 57(6):1178–1192, 2005.
- J. Herzog, T. Hibi, and N. V. Trung. Symbolic powers of monomial ideals and vertex cover algebras. Advances in Mathematics, 210(1):304–322, 2007.
- J. Herzog, T. J. Puthenpurakal, and J. K. Verma. Hilbert polynomials and powers of ideals. Mathematical Proceedings of the Cambridge Philosophical Society, 145(3):623-642, 2008.
- D. Katz and J. Validashti.

Multiplicities and rees valuations. Collectanea mathematica, 61(1):1-24, 2010.



#### M. Nagata.

On the 14-th problem of hilbert.

American Journal of Mathematics, 81(3):766–772, 1959.

## D. I

D. Rees.

On a problem of zariski. *Illinois Journal of Mathematics*, 2(1):145–149, 1958.

 B. Ulrich and J. Validashti.
Numerical criteria for integral dependence.
Mathematical Proceedings of the Cambridge Philosophical Society, 151(1):95–102, 2011.