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Hilbert functions

• Let R = K [[x1, . . . , xr ]] or R = K [x1, . . . , xr ] with degree xi = 1
where K is a field.

• For an ideal (homogeneous) I in R, let A = R/I .

• Graded: A is graded if I is a homogeneous ideal in R = K [x1, . . . , xr ]

• Ri (resp. Ii ) be the set of homogeneous polynomial of degree i in
(resp. in I )

• Hilbert function: HFA : N→ N

i 7→ dimK Ri − dimK Ii

• M = (x1, . . . , xr ) and m =M/I

• If A is local, then HFA : N→ N is the Hilbert function of the
associated graded ring of A, grm(A) := ⊕i≥0m

i/mi+1.



Macaulay’s theorem

[Macaulay, 1927]: characterized the numerical functions h : N→ N that
can occur as the Hilbert function of standard graded K -algebras

O-sequence: A sequence of positive integers h = (hi : i ≥ 0) that satisfies

Macaulay’s condition, that is h0 = 1 and hi+1 ≤ h
〈i〉
i for i = 1, . . . , s − 1,

Question: Which O-sequences can occur as the Hilbert function of a
graded or local K -algebra with extra properties, for example, domain,
reduced, complete intersections etc.

In this talk we are interested in Gorenstein and complete intersection (CI)
property



The graded case

Suppose that A = R/I is an Artinian K -algebra and
s := max{i : mi 6= 0} is the socle degree of A.

• CI sequence: there exists a CI ring with the Hilbert function h

• Gorenstein sequence: there exists a Gorenstein K -algebra with the
Hilbert function h

• [Macaulay] the O-sequence h = (1, 2, h2, . . . , hs−1, hs = 1) is a
complete intersection (equivalently, Gorenstein) sequence if and only
if

|hi − hi−1| ≤ 1 for all i = 1, . . . , s. (1)

• [Buchsbaum-Eisenbud, Stanley] Let h = (1, 3, . . . , 1) be an
O-sequence. .Then there exists a graded Gorenstein K -algebra with
the Hilbert function h if and only if h is symmetric and
(1, 2, h2 − h1, . . . , hds/2e) − hds/2e)−1) is an O-sequence

• Hilbert functions of graded complete intersection is easy to compute
in any codimension



The local case

Which O-sequences can occur as the Hilbert function of Artinian local
complete intersection K -algebra, more generally Gorenstein K -algebras?

• The problem is open even in codimension three

• The problem is that the Hilbert function of local ring is the Hilbert
function of grm(A) which need not have good properties even if A
has

• The first open case is when A = R/I is an Artinian ring where
R = K [|x , y , z |] and I ⊆ (x , y , z)2 generated by a regular sequence
(f , g , p) where f , g , p have nonzero and linearly independent
quadratic parts

• Thus h1 = h2 = 3.

• Therefore h is of the form (1, 3, 3, . . . , 1)

• For an O-sequence h, we set max h := max{hi : i ≥ 0} and

∆(h) := max{|hi − hi−1| : i = 3, . . . , s}.



Main theorem

Theorem
Let h be a (1, 3, 3, . . . , 1) be an O-sequence. Then the following
statements are equivalent:

(i) h is a CI sequence;

(ii) h is a Gorenstein sequence;

(iii) h satisfies one of the following conditions:
(I) h3 ≤ 3;
(II) h3 = 4 and ∆(h) = 1;
(III) h3 = 4, ∆(h) = 2 and h has a unique fall by two at the peak
position. In this case, h is of the following form:

hi =


i + 1 for i ≤ d − 2

d for i = d − 1, d , . . . , d + r − 1

d − 2 for i = d + r

hi−1 or hi−1 − 1 for i ≥ d + r + 1

for some integers d = max h ≥ 4 and r ≥ 0.



Examples

Example
(1) Consider the O-sequence h = (1, 3, 3, 4, 5, 4, 4, 2, 1). Recently,
Iarrobino and Marques proved that h is not a Gorenstein sequence. We
show that h is not a Gorenstein sequence using Theorem 1.

(2) The sequence (1, 3, 3, 4, 3, 3, 3, 1) is not Gorenstein

(3) Consider the O-sequence h = (1, 3, 3, 3, 2, 2, 1, 1). Then
I = (yz − x6, xz − y5, xy − z3) is a CI ideal with the HF h.

(3) Consider the O-sequence h = (1, 3, 3, 4, 2, 1). Then
I = (xz , yz + x3, z2 + y3) is a CI ideal with the Hilbert function
h = (1, 3, 3, 4, 2, 1).



Sketch of Proof

• By Macaulay if h is an O-sequence of the form (1, 3, 3, . . . , 1), then
h3 ≤ 4.

• If h3 ≤ 3, then we explicitly obtain F ∈ KDP [X ,Y ,Z ] such that
R/AnnR(F ) has the HF h.

• If h3 = 4, then by Macaulay h is of the form
h = (1, 3, 3, 4, 5, . . . , d , d , d , . . . , ht = d , ht+1 < d , . . . , 1) where
d = max h and t is the peak position of h

• We reduce to the codimension two case to construct a CI ideal with
the HF h.



Thank you!


