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Set up

Suppose (R,m) is a Noetherian local ring of dimension d ⩾ 1 and I is an
m-primary ideal.

A sequence of ideals I = {In}n∈Z is called an I-admissible filtration if
1 In+1 ⊆ In,
2 ImIn ⊆ Im+n and
3 In

⊆ In ⊆ In−k for some k ∈ N.

A reduction of I is an ideal J ⊆ I1 such that JIn = In+1 for n ≫ 0.
It is called minimal reduction if it is minimal with respect to containment
among all reductions.

Minimal reduction of I exist and is generated by d elements if R/m is
infinite.

For a minimal reduction J of I, we define reduction number of I with
respect to J

rJ(I) = sup{n ∈ Z ∣ In /= JIn−1}
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Set up

Let I = {In} be an I-admissible filtration. Then the Hilbert-Samuel
function of I is defined as

HI(n) = λ(R/In).

There is a polynomial PI(x) ∈ Q[x] of degree d so that HI(n) = PI(n) for
all large n and
there exist integers e0(I),e1(I), . . . ,ed(I) such that

PI(x) = e0(I)(
x + d − 1

d
) − e1(I)(

x + d − 2
d − 1

) +⋯ + (−1)ded(I).

The coefficients ei(I) are called the Hilbert coefficients of I.
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Bounding reduction number

Consider I = {In
}.

If R is a one dimensional Cohen-Macaulay local ring then r(I) ⩽ e0(I) − 1.

r(I) = min{rJ(I) ∶ J is a minimal reduction of I.}

Theorem (Vasconcelos) In a Cohen-Macaulay local ring of dimension
d ⩾ 1,

r(I) ⩽
d .e0(I)

o(I)
− 2d + 1 (1)

where o(I) is the largest positive integer n such that I ⊆ mn.
A non-Cohen-Macaulay version of the above result exists.
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Bounding reduction number

Theorem (Rossi, 1999) Let R be a Cohen-Macaulay local ring of
dimension at most two. Then for a minimal reduction J ⊆ I

rJ(I) ⩽ e1(I) − e0(I) + λ(R/I) + 1. (2)

When d ⩾ 3, it is a conjecture.

Difficulties
1 Reduction number of I does not behave well with respect to superficial

elements. We have rJR′(IR′
) ⩽ rJ(I) where R′

= R/(x).

2 Ratliff-Rush filtration of I does not behave well with respect to superficial
elements i.e. ̃InR′

≠
̃InR′ for n ⩾ 1.
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Known Cases

Remark Let (R,m) be a three dimensional Cohen-Macaulay local ring, I
an m primary ideal and J ⊆ I a minimal reduction of I. Then

rJ(I) ⩽ e1(I) − e0(I) + λ(R/I) + 1

if one of the following conditions hold:
1 depthG(I) ⩾ 1. (Rossi)
2 depthG(F) ⩾ 2, where F = {

̃In
}.

3 e2(I) = e3(I) = 0.
4 e2(I) = 0 and I is asymptotically normal .
5 e2(I) = 0 and G(I) is generalized Cohen-Macaulay.
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How to extend to dimension 3?

If depthG(I) > 0 then rJ/(x)(I/(x)) = rJ(I). The following examples show that

rJ/(x)(I/(x)) = rJ(I) may hold even if depthG(I) = 0.

Example 1

(Rossi-Valla) Let R = Q[[x ,y]] and I = (x4,x3y ,xy3,y4
). Then x2y2

∈ I2
∶ I ⊆̃I

but x2y2
∉ I which implies depthG(I) = 0.

Note that J = (x4,y4
) is a minimal

reduction of I and p = x4
+ y4 is superficial for I as e0(I) = 16 = e0(I/(p)) and

e1(I) = 6 = e1(I/(p)). Further, rJ(I) = 2 = rJ/(p)(I/(p)).
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How to extend to dimension 3?

Lemma (Mandal, )) Let (R,m) be a Noetherian local ring of dimension
d ⩾ 1 and depthR > 0. Let I be an m primary ideal and J ⊆ I a minimal
reduction of I. If rJ/(x)(I/(x)) < rJ(I) for a superficial element x ∈ I, then
̃In
≠ In for all rJ/(x)(I/(x)) ⩽ n < rJ(I).

Consider
ρ(I) = min{i ⩾ 1∣̃In

= In for all n ⩾ i}.

Theorem (Mandal, ) Let (R,m) be a Cohen-Macaulay local ring of
dimension d = 3 and I an m primary ideal. For a minimal reduction J of I,
if ρ(I) ⩽ rJ(I) − 1, then rJ(I) ⩽ e1(I) − e0(I) + λ(R/I) + 1.
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Bounds in dimension three

Lemma (Mandal, ) Let (R,m) be a Noetherian local ring of dimension
d ⩾ 2 and I an m-primary ideal with depthG(I t

) > 0 for some t ⩾ 1. Let x ∈ I
be a superficial element for I and J ⊆ I be a minimal reduction of I. Then

rJ(I) ⩽ rJ/(x)(I/(x)) + t − 1.

Theorem (Mandal, ) Let (R,m) be a Cohen-Macaulay local ring of
dimension d = 3 and I an m-primary ideal with depthG(I t

) > 0 for some
t ⩾ 1. Let J ⊆ I be a minimal reduction of I. Then

rJ(I) ⩽ e1(I) − e0(I) + λ(R/I) + t .

Furthermore, if rJ(I) ≡ k mod t , 1 ⩽ k ⩽ t − 1, then

rJ(I) ⩽ e1(I) − e0(I) + λ(R/I) + k .

Corollary Suppose depthG(I2
) > 0 and rJ(I) is odd. Then

rJ(I) ⩽ e1(I) − e0(I) + λ(R/I) + 1.

In this case, rJ(I) = rJ/(x)(I/(x)) .
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Example

Example 2

Let R = k[[x ,y ,z,u,v ,w , t]]/(t2, tu, tv , tw ,uv ,uw ,vw ,u3
− xt ,v3

− yt ,w3
− zt).

Then R is a Cohen-Macaulay local ring of dimension 3 and depthG(m) = 0.
We have e0(m) = 8, e1(m) = 11, e2(m) = 4 and e3(m) = 0. We have m2

≠
̃m2

and mj
=

̃mj for j ⩾ 3. Therefore depthG(m3
) ⩾ 1. Now J = (x ,y ,z) is a minimal

reduction of m and rJ(m) = 3 ⩽ e1(m) − e0(m) + λ(R/m) + 3 = 7. Note that the
bound de0(m)

o(m) −2d +1 = 3.8−6+1 = 19 given by Vasconcelos is larger than our
bound.
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Bounds in dimension three

Theorem (Mandal, ) Let (R,m) be a Cohen-Macaulay local ring of
dimension d ⩾ 3 and I an m primary ideal with depthG(I) ⩾ d − 3. Then

rJ(I) ⩽ e1(I) − e0(I) + λ(R/I) + 1 + (e2(I) − 1)e2(I) − e3(I). (3)

Corollary Let (R,m) be a three dimensional Cohen-Macaulay local ring
and I an m-primary ideal. Then the following statements hold.

1 If e2(I) = 0 or 1 then r(I) ⩽ e1(I) − e0(I) + λ(R/I) + 1 − e3(I).

2 If e2(I) = 1 and I is asymptotically normal then
r(I) ⩽ e1(I) − e0(I) + λ(R/I) + 1.

3 If e2(I) = 2 then r(I) ⩽ e1(I) − e0(I) + λ(R/I) + 2 − e3(I).

e2(I)(e2(I) − 1) − e3(I) ⩾ 0 for integrally closed I.
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Bounds in dimension three

In particular, when e2(I) = 0 and e3(I) = 0., then Rossi’s bound holds.

(Tony P., 2017) In dimension three, e2(I) = 0 = e3(I) implies that the
Ratliff-Rush filtration of I behaves well modulo a superficial element.

Suppose I is integrally closed. Then e2(I) = 0 implies G(I) is
Cohen-Macaulay.

Theorem ( ,Yadav) Let (R,m) be a Cohen-Macaulay local ring of
dimension d ⩾ 3 and I an m-primary ideal. Suppose the Ratliff-Rush
filtration of I behaves well modulo a superficial sequence x1, . . . ,xd−2 ∈ I.
Then

e3(I) ⩾ e2(I) − e1(I) + e0(I) − `(R/I).

Marley proved the above inequality assuming depthG(I) ⩾ d − 1.
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Bounds in dimension three

Example 3
(Corso-Polini-Rossi) Let
R = k[[X ,Y ,Z ,U,V ,W ]]/(Z 2,ZU,ZV ,UV ,YZ −U3,XZ −V 3

) be a three
dimensional Cohen-Macaulay local ring. Let x ,y ,z,u,v ,w denote the
corresponding images of X ,Y ,Z ,U,V ,W in R and m = (x ,y ,z,u,v ,w). Then
G(m) has depth 1 and

H(m, t) =
1 + 3t + 3t3

− t4

(1 − t)3

which gives e2(m) = 3,e1(m) = 8,e0(m) = 6, `(R/m) = 1,e3(m) = −1. Thus
e2(m) − e1(m) + e0(m) − `(R/m) = 0 and e3(m) = −1. Therefore the
Ratliff-Rush filtration of m does not behave well modulo superficial element.
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Bounds in dimension three

Theorem ( ,Yadav) Let (R,m) be a Cohen-Macaulay local ring of
dimension d ⩾ 3, I an integrally closed m-primary ideal and J a minimal
reduction of I. Then

e3(I) ⩽
(rJ(I) − 1)

2
(e2(I) − e1(I) + e0(I) − `(R/I)); (4)

e3(I) ⩽
(e1(I) − e0(I) + `(R/I))

2
(e2(I) − e1(I) + e0(I) − `(R/I)) and (5)

e3(I) ⩽
(e2(I) − 1)

2
(e2(I) − e1(I) + e0(I) − `(R/I)). (6)

Further, suppose d = 3 and equality holds in any one of (4), (5) or (6).
Then the Ratliff-Rush filtration of I behaves well modulo a superficial
element. Conversely, suppose the Ratliff-Rush filtration of I behaves well
modulo a superficial sequence x1, . . . ,xd−2 ∈ I. Then (i) equality holds in
(4) provided rJ(I) ⩽ 3; (ii) equality holds in (5) provided
e1(I) − e0(I) + `(R/I) ⩽ 2 and (iii) equality holds in (6) provided e2(I) ⩽ 3.
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Bounds in dimension three

Theorem ( ,Yadav) Let (R,m) be a Cohen-Macaulay local ring of
dimension d ⩾ 3, I an integrally closed m-primary ideal and J ⊆ I a
minimal reduction of I. Suppose depthG(I) ⩾ d − 3. Then

rJ(I) ⩽ e1(I)−e0(I)+`(R/I)+1+e2(I)(e2(I)−e1(I)+e0(I)−`(R/I))−e3(I).

Rossi’s bound remains mystery.
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Extension in Non Cohen-Macaulay case

Theorem (Mandal, ) Let (R,m) be a one dimensional Buchsbaum local
ring and I an m-primary ideal. Let J be a minimal reduction of I then

rJ(I) ⩽ e1(I) − e1(J) − e0(I) + λ(R/I) + 2.

Theorem (Mandal, ) Let (R,m) be a two dimensional Buchsbaum local
ring and I an m-primary ideal. Let J be a minimal reduction of I and
depthG(I t

) > 0 for some t ⩾ 1 then

rJ(I) ⩽ e1(I) − e1(J) − e0(I) + λ(R/I) + t + 1
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Thank You
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