Bounds for the reduction number of primary ideals in dimension three

Kumari Saloni

INDIAN INSTITUTE OF TECHNOLOGY PATNA (joint work with Mousumi Mandal and Anoot Kumar Yadav)

School on Commutative Algebra and Algebraic Geometry in Prime Characteristics , ICTP

May 15, 2023

Set up

Suppose (R, \mathfrak{m}) is a Noetherian local ring of dimension $d \ge 1$ and I is an \mathfrak{m} -primary ideal.

- A sequence of ideals $\mathcal{I} = \{I_n\}_{n \in \mathbb{Z}}$ is called an *I*-admissible filtration if
 - $I_{n+1} \subseteq I_n,$ $I_m I_n \subseteq I_{m+n} \text{ and}$ $I^n \subseteq I_n \subseteq I^{n-k} \text{ for some } k \in \mathbb{N}.$
- A reduction of *I* is an ideal *J* ⊆ *I*₁ such that *JI_n* = *I_{n+1}* for *n* ≫ 0.
 It is called *minimal reduction* if it is minimal with respect to containment among all reductions.
- Minimal reduction of *I* exist and is generated by *d* elements if *R*/m is infinite.
- For a minimal reduction J of \mathcal{I} , we define reduction number of \mathcal{I} with respect to J

$$r_J(\mathcal{I}) = \sup\{n \in \mathbb{Z} \mid I_n \neq JI_{n-1}\}$$

Let *I* = {*I_n*} be an *I*-admissible filtration. Then the Hilbert-Samuel function of *I* is defined as

$$H_{\mathcal{I}}(n) = \lambda(R/I_n).$$

- There is a polynomial P_I(x) ∈ Q[x] of degree d so that H_I(n) = P_I(n) for all large n and
- there exist integers $e_0(\mathcal{I}), e_1(\mathcal{I}), \dots, e_d(\mathcal{I})$ such that

$$P_{\mathcal{I}}(x) = e_0(\mathcal{I})\binom{x+d-1}{d} - e_1(\mathcal{I})\binom{x+d-2}{d-1} + \dots + (-1)^d e_d(\mathcal{I}).$$

• The coefficients $e_i(\mathcal{I})$ are called the Hilbert coefficients of \mathcal{I} .

- Consider $\mathcal{I} = \{I^n\}$.
- If *R* is a one dimensional Cohen-Macaulay local ring then $r(I) \leq e_0(I) 1$.

 $r(I) = \min\{r_J(I) : J \text{ is a minimal reduction of } I.\}$

 Theorem (Vasconcelos) In a Cohen-Macaulay local ring of dimension d ≥ 1,

$$r(I) \leq \frac{d.e_0(I)}{o(I)} - 2d + 1 \tag{1}$$

where o(I) is the largest positive integer *n* such that $I \subseteq \mathfrak{m}^n$.

• A non-Cohen-Macaulay version of the above result exists.

 Theorem (Rossi, 1999) Let *R* be a Cohen-Macaulay local ring of dimension at most two. Then for a minimal reduction *J* ⊆ *I*

$$r_J(I) \leq e_1(I) - e_0(I) + \lambda(R/I) + 1.$$
 (2)

- When $d \ge 3$, it is a conjecture.
- Difficulties
 - Reduction number of *I* does not behave well with respect to superficial elements. We have $r_{JR'}(IR') \leq r_J(I)$ where R' = R/(x).

 Theorem (Rossi, 1999) Let *R* be a Cohen-Macaulay local ring of dimension at most two. Then for a minimal reduction *J* ⊆ *I*

$$r_J(I) \leq e_1(I) - e_0(I) + \lambda(R/I) + 1.$$
 (2)

- When d ≥ 3, it is a conjecture.
- Difficulties
 - Reduction number of *I* does not behave well with respect to superficial elements. We have $r_{JR'}(IR') \leq r_J(I)$ where R' = R/(x).
 - **2** Ratliff-Rush filtration of *I* does not behave well with respect to superficial elements i.e. $\tilde{I}^n R' \neq \tilde{I}^n \bar{R}'$ for $n \ge 1$.

 Remark Let (R, m) be a three dimensional Cohen-Macaulay local ring, I an m primary ideal and J ⊆ I a minimal reduction of I. Then

$$r_J(I) \leq e_1(I) - e_0(I) + \lambda(R/I) + 1$$

if one of the following conditions hold:

• depth
$$G(I) \ge 1$$
. (Rossi)
• depth $G(\mathcal{F}) \ge 2$, where $\mathcal{F} = \{\widetilde{I^n}\}$.
• $e_2(I) = e_3(I) = 0$.
• $e_2(I) = 0$ and I is asymptotically normal .
• $e_2(I) = 0$ and $G(I)$ is generalized Cohen-Macaulay.

If depth G(I) > 0 then $r_{J/(x)}(I/(x)) = r_J(I)$. The following examples show that $r_{J/(x)}(I/(x)) = r_J(I)$ may hold even if depth G(I) = 0.

Example 1

(Rossi-Valla) Let R = Q[[x, y]] and $I = (x^4, x^3y, xy^3, y^4)$. Then $x^2y^2 \in I^2 : I \subseteq \widetilde{I}$ but $x^2y^2 \notin I$ which implies depth G(I) = 0.

If depth G(I) > 0 then $r_{J/(x)}(I/(x)) = r_J(I)$. The following examples show that $r_{J/(x)}(I/(x)) = r_J(I)$ may hold even if depth G(I) = 0.

Example 1

(Rossi-Valla) Let R = Q[[x, y]] and $I = (x^4, x^3y, xy^3, y^4)$. Then $x^2y^2 \in I^2 : I \subseteq \widetilde{I}$ but $x^2y^2 \notin I$ which implies depth G(I) = 0. Note that $J = (x^4, y^4)$ is a minimal reduction of I and $p = x^4 + y^4$ is superficial for I as $e_0(I) = 16 = e_0(I/(p))$ and $e_1(I) = 6 = e_1(I/(p))$. Further, $r_J(I) = 2 = r_{J/(p)}(I/(p))$.

• Lemma (Mandal, _)) Let (R, \mathfrak{m}) be a Noetherian local ring of dimension $d \ge 1$ and depth R > 0. Let I be an \mathfrak{m} primary ideal and $J \subseteq I$ a minimal reduction of I. If $r_{J/(x)}(I/(x)) < r_J(I)$ for a superficial element $x \in I$, then $\widetilde{I^n} \neq I^n$ for all $r_{J/(x)}(I/(x)) \le n < r_J(I)$.

Consider

$$\rho(I) = \min\{i \ge 1 | \widetilde{I}^n = I^n \text{ for all } n \ge i\}.$$

• Theorem (Mandal, _) Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension d = 3 and I an \mathfrak{m} primary ideal. For a minimal reduction J of I, if $\rho(I) \leq r_J(I) - 1$, then $r_J(I) \leq e_1(I) - e_0(I) + \lambda(R/I) + 1$.

Bounds in dimension three

• Lemma (Mandal, _) Let (R, \mathfrak{m}) be a Noetherian local ring of dimension $d \ge 2$ and I an \mathfrak{m} -primary ideal with depth $G(I^t) > 0$ for some $t \ge 1$. Let $x \in I$ be a superficial element for I and $J \subseteq I$ be a minimal reduction of I. Then

$$r_J(I) \leq r_{J/(x)}(I/(x)) + t - 1.$$

Theorem (Mandal,_) Let (R, m) be a Cohen-Macaulay local ring of dimension d = 3 and l an m-primary ideal with depth G(l^t) > 0 for some t ≥ 1. Let J ⊆ l be a minimal reduction of l. Then

$$r_J(I) \leq e_1(I) - e_0(I) + \lambda(R/I) + t.$$

Furthermore, if $r_J(I) \equiv k \mod t$, $1 \le k \le t - 1$, then

$$r_J(I) \leq e_1(I) - e_0(I) + \lambda(R/I) + k.$$

• Corollary Suppose depth $G(I^2) > 0$ and $r_J(I)$ is odd. Then

$$r_J(I) \leq e_1(I) - e_0(I) + \lambda(R/I) + 1.$$

In this case, $r_J(I) = r_{J/(x)}(I/(x))$.

Example 2

Let $R = k[[x, y, z, u, v, w, t]]/(t^2, tu, tv, tw, uv, uw, vw, u^3 - xt, v^3 - yt, w^3 - zt)$. Then R is a Cohen-Macaulay local ring of dimension 3 and depth $G(\mathfrak{m}) = 0$. We have $e_0(\mathfrak{m}) = 8$, $e_1(\mathfrak{m}) = 11$, $e_2(\mathfrak{m}) = 4$ and $e_3(\mathfrak{m}) = 0$. We have $\mathfrak{m}^2 \neq \widetilde{\mathfrak{m}^2}$ and $\mathfrak{m}^j = \widetilde{\mathfrak{m}^j}$ for $j \ge 3$. Therefore depth $G(\mathfrak{m}^3) \ge 1$. Now J = (x, y, z) is a minimal reduction of \mathfrak{m} and $r_J(\mathfrak{m}) = 3 \le e_1(\mathfrak{m}) - e_0(\mathfrak{m}) + \lambda(R/\mathfrak{m}) + 3 = 7$. Note that the bound $\frac{de_0(\mathfrak{m})}{o(\mathfrak{m})} - 2d + 1 = 3.8 - 6 + 1 = 19$ given by Vasconcelos is larger than our bound.

Bounds in dimension three

 Theorem (Mandal,) Let (R, m) be a Cohen-Macaulay local ring of dimension d ≥ 3 and l an m primary ideal with depth G(l) ≥ d - 3. Then

$$r_{J}(I) \leq e_{1}(I) - e_{0}(I) + \lambda(R/I) + 1 + (e_{2}(I) - 1)e_{2}(I) - e_{3}(I).$$
(3)

• Corollary Let (*R*, m) be a three dimensional Cohen-Macaulay local ring and *I* an m-primary ideal. Then the following statements hold.

 Theorem (Mandal,) Let (R, m) be a Cohen-Macaulay local ring of dimension d ≥ 3 and l an m primary ideal with depth G(l) ≥ d - 3. Then

$$r_{J}(I) \leq e_{1}(I) - e_{0}(I) + \lambda(R/I) + 1 + (e_{2}(I) - 1)e_{2}(I) - e_{3}(I).$$
(3)

- Corollary Let (R, m) be a three dimensional Cohen-Macaulay local ring and I an m-primary ideal. Then the following statements hold.
 - If $e_2(I) = 0$ or 1 then $r(I) \leq e_1(I) e_0(I) + \lambda(R/I) + 1 e_3(I)$.
 - If $e_2(I) = 1$ and *I* is asymptotically normal then $r(I) \leq e_1(I) e_0(I) + \lambda(R/I) + 1$.
 - ◎ If $e_2(I) = 2$ then $r(I) \leq e_1(I) e_0(I) + \lambda(R/I) + 2 e_3(I)$.
- $e_2(I)(e_2(I) 1) e_3(I) \ge 0$ for integrally closed *I*.

Bounds in dimension three

- In particular, when $e_2(I) = 0$ and $e_3(I) = 0$, then Rossi's bound holds.
- (Tony P., 2017) In dimension three, $e_2(I) = 0 = e_3(I)$ implies that the Ratliff-Rush filtration of *I* behaves well modulo a superficial element.
- Suppose *I* is integrally closed. Then *e*₂(*I*) = 0 implies *G*(*I*) is Cohen-Macaulay.
- Theorem (_,Yadav) Let (R, m) be a Cohen-Macaulay local ring of dimension d ≥ 3 and l an m-primary ideal. Suppose the Ratliff-Rush filtration of l behaves well modulo a superficial sequence x₁,..., x_{d-2} ∈ l. Then

$$e_3(I) \ge e_2(I) - e_1(I) + e_0(I) - \ell(R/I).$$

• Marley proved the above inequality assuming depth $G(I) \ge d - 1$.

Example 3

(Corso-Polini-Rossi) Let $R = k[[X, Y, Z, U, V, W]]/(Z^2, ZU, ZV, UV, YZ - U^3, XZ - V^3)$ be a three dimensional Cohen-Macaulay local ring. Let x, y, z, u, v, w denote the corresponding images of X, Y, Z, U, V, W in R and m = (x, y, z, u, v, w). Then $G(\mathfrak{m})$ has depth 1 and

$$H(\mathfrak{m},t) = \frac{1+3t+3t^3-t^4}{(1-t)^3}$$

which gives $e_2(\mathfrak{m}) = 3$, $e_1(\mathfrak{m}) = 8$, $e_0(\mathfrak{m}) = 6$, $\ell(R/\mathfrak{m}) = 1$, $e_3(\mathfrak{m}) = -1$. Thus $e_2(\mathfrak{m}) - e_1(\mathfrak{m}) + e_0(\mathfrak{m}) - \ell(R/\mathfrak{m}) = 0$ and $e_3(\mathfrak{m}) = -1$. Therefore the Ratliff-Rush filtration of \mathfrak{m} does not behave well modulo superficial element.

Bounds in dimension three

 Theorem (_,Yadav) Let (R, m) be a Cohen-Macaulay local ring of dimension d ≥ 3, I an integrally closed m-primary ideal and J a minimal reduction of I. Then

$$e_{3}(I) \leq \frac{(r_{J}(I)-1)}{2} (e_{2}(I)-e_{1}(I)+e_{0}(I)-\ell(R/I)); \qquad (4)$$

$$e_3(I) \leq \frac{\left(e_1(I) - e_0(I) + \ell(R/I)\right)}{2} \left(e_2(I) - e_1(I) + e_0(I) - \ell(R/I)\right) \text{ and } (5)$$

$$e_3(I) \leq \frac{(e_2(I)-1)}{2}(e_2(I)-e_1(I)+e_0(I)-\ell(R/I)).$$
 (6)

Further, suppose d = 3 and equality holds in any one of (4), (5) or (6). Then the Ratliff-Rush filtration of *I* behaves well modulo a superficial element. Conversely, suppose the Ratliff-Rush filtration of *I* behaves well modulo a superficial sequence $x_1, \ldots, x_{d-2} \in I$. Then (i) equality holds in (4) provided $r_J(I) \leq 3$; (ii) equality holds in (5) provided $e_1(I) - e_0(I) + \ell(R/I) \leq 2$ and (iii) equality holds in (6) provided $e_2(I) \leq 3$. Theorem (_,Yadav) Let (R, m) be a Cohen-Macaulay local ring of dimension d ≥ 3, I an integrally closed m-primary ideal and J ⊆ I a minimal reduction of I. Suppose depth G(I) ≥ d – 3. Then

$$r_{J}(I) \leq e_{1}(I) - e_{0}(I) + \ell(R/I) + 1 + e_{2}(I)(e_{2}(I) - e_{1}(I) + e_{0}(I) - \ell(R/I)) - e_{3}(I).$$

Rossi's bound remains mystery.

• Theorem (Mandal,_) Let (*R*, m) be a one dimensional Buchsbaum local ring and *I* an m-primary ideal. Let *J* be a minimal reduction of *I* then

$$r_J(I) \leq e_1(I) - e_1(J) - e_0(I) + \lambda(R/I) + 2.$$

 Theorem (Mandal,_) Let (R, m) be a two dimensional Buchsbaum local ring and I an m-primary ideal. Let J be a minimal reduction of I and depth G(I^t) > 0 for some t ≥ 1 then

$$r_J(I) \leq e_1(I) - e_1(J) - e_0(I) + \lambda(R/I) + t + 1$$

References

- A. Guerrierri and M. E. Rossi, Hilbert coefficients of Hilbert filtrations, J. Algebra, 199 (1998), 40-61.
- L. Ghezzi, S. Goto, J. Hong and W. Vasconceloes, *Sally modules and reduction numbers of ideals*, Nagoya Math. J. 226 (2017), 106-126.
- S. Huckaba and T. Marley, *Hilbert coefficients and the depths of associated graded rings*, J. Lond. Math. Soc. (2) 56 (1997), no. 1, 64-76.
- S. Itoh, *Hilbert coefficients of integrally closed ideals*, J. Algebra 176 (1995), 638-652.
- A. Guerrierri and M. E. Rossi, *Hilbert coefficients of Hilbert filtrations*, J. Algebra, 199 (1998), 40-61.
- L. Ghezzi, S. Goto, J. Hong and W. Vasconceloes, *Sally modules and reduction numbers of ideals*, Nagoya Math. J. 226 (2017), 106-126.
- S. Huckaba and T. Marley, *Hilbert coefficients and the depths of associated graded rings*, J. Lond. Math. Soc. (2) 56 (1997), no. 1, 64-76.
- S. Itoh, Hilbert coefficients of integrally closed ideals, J. Algebra 176 (1995), 638-652.

References

- M. Mandal and K. Saloni, *Bounds for the reduction number of primary ideal in dimension three*, To Appear, Proc. Amer. Math. Soc. (arXiv.2209.13319)
- T. Marley, Hilbert functions of ideals in Cohen-Macaulay rings, PhD Thesis (1989).
- Tony J. Puthenpurakal, Ratliff-Rush filtration, regularity and depth of higher associated graded rings: Part I, J. Pure Appl. Algebra 208 (2007), 159-176.
- Tony J. Puthenpurakal, Ratliff-Rush filtration, regularity and depth of higher associated graded rings: Part II, J. Pure Appl. Algebra 221 (2017), 611-631.
- M. E. Rossi, A bound on the reduction number of a primary ideal, Proc. of the Amer. Math. Soc. 128(5) (1999), 1325-1332.
- M. E. Rossi and I. Swanson, Notes on the behavior of the Ratliff-Rush filtration, Contemp. Math. 331 (2001), 313-328.
- A. Corso, C. Polini and M. E. Rossi, *Depth of associated graded rings via Hilbert coefficients of ideals*, J. Pure Appl. Algebra 201 (2005), 126-141.
- M.E. Rossi and G. Valla *Hilbert functions of filtered modules*, Lecture Notes of the Unione Matematica Italiana, 9. Springer-Verlag, Berlin; UMI, Bologna, 2010. xviii+100 pp.
- K. Saloni and A. K. Yadav Ratliff-Rush filtration, Hilbert coefficients and reduction number of integrally closed ideals, Preprint, arXiv:2304.04524

Kumari Saloni (Indian Institute of Technology Patna) Bounds for the reduction number of primary ideals in di

Thank You