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Abstract
We investigate the behaviour of the Hilbert functions of bigraded algebras over a field, generated by
elements of bidegrees (1,0), (dy,e1), ..., (ds, €5), where d;’s (resp. e;’s) are non-negative (resp. positive)

integers for z = 1,...,s. It is well known that for a standard bigraded algebra R, the Hilbert function
Hpg(m,n) is represented by a polynomial for all m,n > 0. However, N. D. Hoang and N. V. Trung
showed that if all e;’s are one then there exist integers my, ng such that Hz(m, n) is equal to a polynomial
in m,n for m > dn + ng and n > ngy, where d = max{dy,...,ds}. We concentrate on how Hpr(m,n)
behaves in the complementary region. Thereby we define a density function for a Noetherian filtration of
homogeneous ideals in a standard graded algebra. Our main ingredient is the structure theorem for vector
partition functions due to B. Sturmfels.

Setup

c A=, ~9An = klh1, ..., hy]: astandard graded algebra over a field k.

- R = @_(m,n)EI\V Rmn = Alg1,...,9s]: a bigraded k-algebra with degh; = (1,0) and
degg; = (dj,ej)fori=1,...,randj=1,...,s.

- There is an A-algebra homomorphism
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such that o(X;) = h; and ¢(Y;) = g;. Consider S as bigraded with deg X; = (1,0) and
degY; = (d;, e;) for all 4, j. So there is a finite bigraded minimal +free resolution of R:
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- The bigraded Hilbert series of .S is
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Thus Hp(x,y) = P(x,y)-Hg(x,y), where P(z,y) = > (—1)'( X", Bjja"uys) € Z[z,y). Hence
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Note. For each pair (m,n) € N2,

dimy Smﬁ — qu(m, n) = #{()\1, ce )‘7“—|—s> c N+

_)\T—I—S_

where the function ¢y, : N — N is called the vector partition function.

Specific examples of R

 An N-graded filtration 7 = {I, },,>( of ideals in A is a collection of ideals which satisfies
the conditions:

(D Iy=A,Q2) I € InVnand 3) Inly € Inym Vn,m > 0.
Then R := R(F) = @y n)enz(In)mt" is a bigraded k-algebra if all I;,’s are homogeneous.

* We say F is a Noetherian filtration if R(JF) is Noetherian.

Examples. (i) the I-adic filtration {I"},,>,
(ii) the integral closure filtration {1™},,>,
(iii) the tight closure filtration {(I")*},,>0,
iv) {I" :gp J®}n>0, where I, J C K[X7, ..., X,] are monomial ideals.

Vector partition functions
M = |vy---vn,|: anm; X nj-matrix with columns v; € N with mj < n;.

3
* pos(M) = {Z vy € R Alyeeey A, € R>O} :
1=1

* For o C [nq], define M, = |[vy | i € o].

* 0 is a basis if #0 = rank(My) = m.

e The chamber complex is the polyhedral subdivision of the pos(M) which is defined as the
common refinement of cones pos(M,) where o’s are bases.

* For a chamber €, let A(€) = {o C [n1] | € C pos(My)}.
* For 0 € A(C), set G5 := Z"™ /My7Z. We say o is non-trivial if G5 # {0}.
* Denote the image of u € Z"" in G, by [u],.
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Theorem (Strumfels, 1995). For each chamber €, 3 a polynomial Py € Q[X7, ..., X;,] of
of degree n1 — m; and for each non-trivial o € A(¢), 3 a polynomial Q¢ € Q[X7,..., X;n,]
of degree #0 — m and a function €0, : G4 \ {0} — Q such that

> Qo ([uly) Q5(u) forallueenz™.
ogeA(€), [u],#£0

dp(u) = Pe(u) +

An observation

e Take M as in the Setup. Without loss of generality we

assume that%<---<d5
( d: diq
pos J Sl ifl1<j73<s—1
€j €j+1]

6—8.
* Set
| pos([(l) i: )ifj—s
* Then pos(M) = U‘;:l@j.

> Fix jp. We define the restricted chamber of & as

RCj, = [ )(€), + (i, bij)).

: di, dj 1 d; :
[Lemma. Fix z € (ejg’ 6?8:1)’ where we define ﬁ = oo if the vector (d;11,e;41) = (1,0).

For a given (a, 3) € R?, 3 an integer n; such that (|zn| + a,n + ) € RC;, Vn > ny.
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Main results

Theorem (Das, - and Trivedi, 2023).

Suppose that depth A > 1 and dim A = d. Let F = {I;,},,>( be a Noetherian
filtration of homogeneous ideals in A. Consider the induced bigraded structure
on R(F). Let {€;}1<j<, be the corresponding cones in R?. Then for every i
there exist a polynomial P; (X,Y’) € Q[X, Y] of total degree r) < d — 1 and a
quasi polynomial @ | X, Y] of total degree < r( such that

dimy, (In),, = Pj,(m,n) + Q;,(m,n) forevery (m,n) € RC; N N?.
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Remark. Let I C A be a homogeneous ideal minimally generated in degrees
d; < --- < dg. Then by Hoang-Trung (2003), d integers m, ng such that for
m 2> dsn +my and n > ny, the Hilbert function Hppy(m, n) = dimy (1"),,
1s equal to a polynomial PR( D(m, n) of total degree d — 1. Observe that our
result generalizes this statement when F 1s the /-adic filtration.

Theorem (Das, - and Trivedi, 2023).
Let 7 = {1 },>0 be a Noetherian filtration of homogneous ideals in A. Then

the function f4 7 : [0,00) \ {Z_j}l<j<s — R>( given by

r — lim
n—roo nd_l

xn |

1s a well-defined continuous function. Moreover,
P;(x) forax € (ﬁ %) with j <s—1

] 2]-7 ej+1 j — )
Py(z) forz e (£, 00),

€s’

farlz)= {

where P;(z) is a polynomial of degree < d — 1Vj and deg Ps = d — 1.

> We further show that if all generators with their degrees lying on slopes
< % are nilpotents and there is a non-nilpotent generator of degree (d;, e;)
then P 1s a zero polynomial if j < ¢ and a non-zero polynomial otherwise.
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