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Abstract
We investigate the behaviour of the Hilbert functions of bigraded algebras over a field, generated by

elements of bidegrees (1, 0), (d1, e1), . . . , (ds, es), where di’s (resp. ei’s) are non-negative (resp. positive)
integers for i = 1, . . . , s. It is well known that for a standard bigraded algebra R, the Hilbert function
HR(m,n) is represented by a polynomial for all m,n ≫ 0. However, N. D. Hoang and N. V. Trung
showed that if all ei’s are one then there exist integers m0, n0 such that HR(m,n) is equal to a polynomial
in m,n for m ≥ dn + n0 and n ≥ n0, where d = max{d1, . . . , ds}. We concentrate on how HR(m,n)
behaves in the complementary region. Thereby we define a density function for a Noetherian filtration of
homogeneous ideals in a standard graded algebra. Our main ingredient is the structure theorem for vector
partition functions due to B. Sturmfels.

Setup
• A =

⊕
n≥0An = k[h1, . . . , hr]: a standard graded algebra over a field k.

• R =
⊕

(m,n)∈N2 Rm,n = A[g1, . . . , gs]: a bigraded k-algebra with deg hi = (1, 0) and
deg gj = (dj, ej) for i = 1, . . . , r and j = 1, . . . , s.
• There is an A-algebra homomorphism

φ : S := k[X1, . . . , Xr, Y1, . . . , Ys] −→ R

such that φ(Xi) = hi and φ(Yj) = gj. Consider S as bigraded with degXi = (1, 0) and
deg Yj = (dj, ej) for all i, j. So there is a finite bigraded minimal +free resolution of R:

0 →
ηt⊕
j=1

S(−atj,−btj)
βtj → · · · →

η1⊕
j=1

S(−a1j,−b1j)
β1j → S → R → 0.

• The bigraded Hilbert series of S is

HS(x, y) =
∑

(m,n)∈N2

dimk Sm,n x
myn =

1

(1− x)r(1− xd1ye1) · · · (1− xdsyes)
.

Thus HR(x, y) = P (x, y)·HS(x, y), where P (x, y) =
∑t

i=0(−1)i
(∑ηi

j=1 βijx
aijybij

)
∈ Z[x, y]. Hence

dimk Rm,n =

t∑
i=0

(−1)i
( ηi∑

j=1

βij dimk Sm−aij ,n−bij

)
.

Note. For each pair (m,n) ∈ N2,

dimk Sm,n = ϕM(m,n) = #

{
(λ1, . . . , λr+s) ∈ Nr+s

∣∣∣
M︷ ︸︸ ︷[

1 · · · 1 d1 · · · ds
0 · · · 0 e1 · · · es

]
·

 λ1
...

λr+s

 =

[
m
n

]}
,

where the function ϕM : N2 → N is called the vector partition function.

Specific examples of R

• An N-graded filtration F = {In}n≥0 of ideals in A is a collection of ideals which satisfies
the conditions:
(1) I0 = A, (2) In+1 ⊆ In ∀n and (3) InIm ⊆ In+m ∀n,m ≥ 0.
Then R := R(F) = ⊕(m,n)∈N2(In)mtn is a bigraded k-algebra if all In’s are homogeneous.

• We say F is a Noetherian filtration if R(F) is Noetherian.

Examples. (i) the I-adic filtration {In}n≥0,
(ii) the integral closure filtration {In}n≥0,
(iii) the tight closure filtration {(In)∗}n≥0,
(iv) {In :R J∞}n≥0, where I, J ⊆ K[X1, . . . , Xr] are monomial ideals.

Vector partition functions

M =
[
v1 · · ·vn1

]
: an m1 × n1-matrix with columns vi ∈ Nm1 with m1 ≤ n1.

• pos(M) :=

{
n1∑
i=1

λivi ∈ Rm1 | λ1, . . . , λn1 ∈ R≥0

}
.

• For σ ⊂ [n1], define Mσ = [vi | i ∈ σ].
• σ is a basis if #σ = rank(Mσ) = m1.
• The chamber complex is the polyhedral subdivision of the pos(M) which is defined as the
common refinement of cones pos(Mσ) where σ’s are bases.
• For a chamber C, let ∆(C) = {σ ⊂ [n1] | C ⊆ pos(Mσ)} .
• For σ ∈ ∆(C), set Gσ := Zm1/MσZ. We say σ is non-trivial if Gσ ̸= {0}.
• Denote the image of u ∈ Zm1 in Gσ by [u]σ.

m

•

•

•

•

(1,7)

(1,4)

(1,2)

(0,1) n

Example. Let M =

[
1 1 2 4 7
0 0 1 1 1

]
.

• pos(M) = pos

([
2 4
1 1

]
︸ ︷︷ ︸
M{3,4}

)
∪ pos

([
4 7
1 1

])
∪ pos

([
0 7
1 1

])
.

• pos
([

2 4
1 1

])
⊂ pos

([
2 7
1 1

])
=⇒ {3, 5} ∈ ∆(pos(M{3,4})).

• G{3,4} =
Z2

Z(2,1)+Z(4,1). Notice G{1,5} = 0.

Theorem (Strumfels, 1995). For each chamber C, ∃ a polynomial PC ∈ Q[X1, . . . , Xm1] of
of degree n1 −m1 and for each non-trivial σ ∈ ∆(C), ∃ a polynomial QC

σ ∈ Q[X1, . . . , Xm1]
of degree #σ −m1 and a function Ωσ : Gσ \ {0} → Q such that

ϕM (u) = PC(u) +
∑

σ∈∆(C), [u]σ ̸=0
Ωσ ([u]σ) ·QC

σ(u) for all u ∈ C ∩ Zm1.

An observation

•
(0,0)

•

•

n

m
• Take M as in the Setup. Without loss of generality we
assume that d1e1 < · · · < ds

es
.

• Set

Cs =


pos

([
dj dj+1

ej ej+1

])
if 1 ≤ j ≤ s− 1

pos

([
1 ds

0 es

])
if j = s

.

• Then pos(M) = ∪s
j=1Cj.

➢ Fix j0. We define the restricted chamber of Cj0 as

RCj0 =
⋂

(Cj0 + (aij, bij)).

Lemma. Fix x ∈ (
dj0
ej0

,
dj0+1

ej0+1
), where we define dj+1

ej+1
= ∞ if the vector (dj+1, ej+1) = (1, 0).

For a given (α, β) ∈ R2, ∃ an integer n1 such that (⌊xn⌋ + α, n + β) ∈ RCj0 ∀n ≥ n1.

Main results

Theorem (Das, - and Trivedi, 2023).
Suppose that depthA ≥ 1 and dimA = d. Let F = {In}n≥0 be a Noetherian
filtration of homogeneous ideals in A. Consider the induced bigraded structure
on R(F). Let {Cj}1≤j≤s be the corresponding cones in R2. Then for every Cj0,
there exist a polynomial Pj0(X, Y ) ∈ Q[X, Y ] of total degree r0 ≤ d− 1 and a
quasi polynomial Qj0[X, Y ] of total degree < r0 such that

dimk (In)m = Pj0(m,n) +Qj0(m,n) for every (m,n) ∈ RCj0 ∩ N2.

m

n

(Hoang-Trung)

ds/es

d1/e1
0

Remark. Let I ⊆ A be a homogeneous ideal minimally generated in degrees
d1 < · · · < ds. Then by Hoang-Trung (2003), ∃ integers m0, n0 such that for
m ≥ dsn +m0 and n ≥ n0, the Hilbert function HR(I)(m,n) = dimk (I

n)m
is equal to a polynomial PR(I)(m,n) of total degree d− 1. Observe that our
result generalizes this statement when F is the I-adic filtration.

Theorem (Das, - and Trivedi, 2023).
Let F = {In}n≥0 be a Noetherian filtration of homogneous ideals in A. Then
the function fA,F : [0,∞) \

{dj
ej

}
1≤j≤s → R≥0 given by

x 7→ lim
n→∞

dimk (In)⌊xn⌋
nd−1

is a well-defined continuous function. Moreover,

fA,F(x) =

{
Pj(x) for x ∈

(dj
ej
,
dj+1

ej+1

)
with j ≤ s− 1,

Ps(x) for x ∈
(ds
es
,∞
)
,

where Pj(x) is a polynomial of degree ≤ d− 1 ∀j and degPs = d− 1.

➢ We further show that if all generators with their degrees lying on slopes
< di

ei
are nilpotents and there is a non-nilpotent generator of degree (di, ei)

then Pj is a zero polynomial if j < i and a non-zero polynomial otherwise.
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