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Setup

A=, >0 An =k[h1,..., h]: a standard graded over a field k.

R= @(m)n)eNg Ry = Alg1,...,9s] is a bigraded k-algebra with
degh; = (1,0) and degg,; = (d;, e;).

Then there is an A-algebra homomorphism
S:=k[Xy,...,X,Y1,...,Y;] =5 R

such that X; — h; and Y; —g; fori=0,...,7and j=1,...,s.
So there exists a bigraded minimal free resolution of R:

U U

0— @S(—at]‘, —btj)Btj — s = @S(—alj,—blj)ﬁlj —-S—>R—0.

j=1 j=1
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The bigraded Hilbert series of S' is

Hs(z,y)= Y USmn)a™y" =

(m,n)€EN2

So Hp(z,y) = P(z,y) - Hs(z,y), where P(z,y) = 33i_(=1)" (]2, Biyaiiy™s).

Hence Z(Rm»n) = Zzzo(fl)i( ;]7:1 5ij‘€(sm—a¢j,”—bij))'

e Note £(Spm ) is

M
0 -« 0 e - es : =lnl

oym(m,n) = #{()\1» sy Args) ENTTS
)\7‘+s

where the function ¢y;: N? — N is called the vector partition function.
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Specific examples of R

e An N-graded filtration F = {I,},,>0 of ideals in A is a collection of ideals
which satisfies the conditions:

(1) IO = A, (2) In-i—l Q In Vn and (3) InI»m Q In+7n Vn,m Z 0.
Then R :=R(F) = Omn)jenz (In)mt" is a bigraded k-algebra if I,,’are homog.
e We say F is a Noetherian filtration if R(F) is Noetherian.

Examples.

(i) the I-adic filtration {I"},>0,

(ii) the integral closure filtration {I"},>0,
(iii) the tight closure filtration {(I™)*}n>o0,
(

iv) {I" :g J®}n>0, where I,J C K[X1,...,X,] are monomial ideals.
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Vector partition functions

M = [vl - 'an], an mq X nij-matrix with columns v; € N with m; < nq.
OpOS(M) ::{ Aivi € R™ |)\1,...,)\n1 E]Rzo}.
i=1
e For o C [n4], define M, = [v; | i € g].
e 0 is a basis if #o0 = rank(M,) = m;.

e The chamber complez is the polyhedral subdivision of the pos(M) which is
defined as the common refinement of cones pos(M,) where o’s are bases.

e For a chamber €, let A(€) = {0 C [n1] | € C pos(M,)}.
e For 0 € A(€), set G, :=Z™ /M,Z. We say o is non-trivial if G, # {0}.
e Denote the image of u € Z™! in G, by [ul,.
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LetM:[l 1 2 4 7}

(0,1

Theorem (Strumfels, 1995). For each chamber €, 3 a polynomial Pg of
degree n; —m; and for each non-trivial o € A(€), 3 a polynomial Q¢ of
degree #0 —my and a function ,: G, \ {0} — Q@ s. t.

drr(u) = Pe(u) + > 9 ([ul,)-Q(n) forallueenzm™.
GEA(Q), [u],#£0
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0O --- 0 1 --- 1

d; d
pos<|:0] 31“D1f1<j<s—1
(R
pos ifj=s
0 1

e Then pos(M) = U5_,&;.

o We define the restricted chamber
of €; as RCj, = (¢, + (o, B)).

oLetM:[l A Y T ds]_

e Set

¢ =
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Theorem (Das, - and Trivedi, 2023).

Suppose depth A > 1 and dim A = d. Let I C A be a homog ideal minimally
generated in degrees di < --- < d,. Let {€;}1<j<s be the corresponding cones
in R%. Then for every €;,, 3 a polynomial P; (X,Y) of total degree rp < d —1
and a quasi polynomial Q;,[X,Y] of total degree < r¢ such that

U(I1,)m = Pjy(m,n) + Qj,(m,n) for every (m,n) € RC;, N N2

ds .
P (1) (m.n) s
(Hoang-Trung, 2003) ,7
"
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Main Theorem

Theorem (Das, - and Trivedi, 2023).
The function fa 5 :[0,00) \ {d;}1<j<s = R>0 given by

e xn
T — lim 7( )}1 !
n—o0o n

is a well-defined continuous function. Moreover,

PJ(.’E) for z € (dj,dj+1) with ] § s — ].,
far(z) =
Py(x) for z € (dg,0),

where Pj(z) is a polynomial of degree < d —1 Vj and deg Ps =d — 1.
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