(Non) linearity of regularity of Tor over complete intersections

(Joint work with Marc Chardin and Navid Nemati)

School on Commutative Algebra and Algebraic Geometry in Prime Characteristics

by

Dipankar Ghosh

Indian Institute of Technology, Kharagpur, India

May 04, 2023

Motivation of our research work.

2 reg $(\operatorname{Ext}_{A}^{2i}(M,N))$ and reg $(\operatorname{Ext}_{A}^{2i+1}(M,N))$ have linear behavior for $i \gg 0$

Similar results hold true for Tor when dim $(\operatorname{Tor}_i^A(M, N)) \leq 1$ for $i \gg 0$

- Two examples showing that the behavior of the regularity of Tor modules could be pretty hectic when the latter condition is not satisfied.
- Finally, if time permits, then we will discuss the proofs.

- Castelnuovo–Mumford regularity is a kind of universal bound for important invariants of graded modules such as
 - the degree of minimal generators of syzygy modules, and
 - 2 the maximum non-vanishing degree of local cohomology modules.

- Castelnuovo–Mumford regularity is a kind of universal bound for important invariants of graded modules such as
 - the degree of minimal generators of syzygy modules, and
 - (2) the maximum non-vanishing degree of local cohomology modules.

Application 1.

The *n*th syzygy module $\Omega_n^Q(M)$ is generated by homogeneous elements of degree $\leq \operatorname{reg}(M) + n$.

- Castelnuovo–Mumford regularity is a kind of universal bound for important invariants of graded modules such as
 - the degree of minimal generators of syzygy modules, and
 - (2) the maximum non-vanishing degree of local cohomology modules.

Application 1.

The *n*th syzygy module $\Omega_n^Q(M)$ is generated by homogeneous elements of degree $\leq \operatorname{reg}(M) + n$.

• In fact, regularity of *M* is defined to be such a minimum possible bound.

- Castelnuovo–Mumford regularity is a kind of universal bound for important invariants of graded modules such as
 - the degree of minimal generators of syzygy modules, and
 - the maximum non-vanishing degree of local cohomology modules.

Application 1.

The *n*th syzygy module $\Omega_n^Q(M)$ is generated by homogeneous elements of degree $\leq \operatorname{reg}(M) + n$.

• In fact, regularity of *M* is defined to be such a minimum possible bound.

Application 2.

The regularity of M helps us to compute Hilbert polynomial of M.

- Castelnuovo–Mumford regularity is a kind of universal bound for important invariants of graded modules such as
 - the degree of minimal generators of syzygy modules, and
 - the maximum non-vanishing degree of local cohomology modules.

Application 1.

The *n*th syzygy module $\Omega_n^Q(M)$ is generated by homogeneous elements of degree $\leq \operatorname{reg}(M) + n$.

• In fact, regularity of *M* is defined to be such a minimum possible bound.

Application 2.

The regularity of M helps us to compute Hilbert polynomial of M.

More precisely, for all n > reg(M), the Hilbert function value of M at n coincides with Hilbert polynomial value at n.

- Castelnuovo–Mumford regularity is a kind of universal bound for important invariants of graded modules such as
 - the degree of minimal generators of syzygy modules, and
 - the maximum non-vanishing degree of local cohomology modules.

Application 1.

The *n*th syzygy module $\Omega_n^Q(M)$ is generated by homogeneous elements of degree $\leq \operatorname{reg}(M) + n$.

• In fact, regularity of *M* is defined to be such a minimum possible bound.

Application 2.

The regularity of M helps us to compute Hilbert polynomial of M.

More precisely, for all n > reg(M), the Hilbert function value of M at n coincides with Hilbert polynomial value at n. It follows from another definition, where $Q = Q_0[x_1, \ldots, x_d]$ is a Noetherian standard \mathbb{N} -graded ring.

$$\operatorname{reg}(M) := \max \left\{ \operatorname{end} \left(H^i_{\mathcal{Q}_+}(M) \right) + i \; \Big| \; \; 0 \leqslant i \leqslant \dim(M) \right\}.$$

Some existing results in the literature related to our work

1

(Eisenbud-Huneke-Ulrich, 2006) If $\dim(\operatorname{Tor}_1^Q(M,N)) \leq 1$, then

 $\operatorname{reg}\left(\operatorname{Tor}_{i}^{Q}(M,N)\right)-i\leqslant\operatorname{reg}(M)+\operatorname{reg}(N)\quad\text{for every }0\leqslant i\leqslant d.$

Some existing results in the literature related to our work

(Eisenbud-Huneke-Ulrich, 2006) If $\dim(\operatorname{Tor}_1^Q(M,N)) \leq 1$, then

 $\operatorname{reg} \left(\operatorname{Tor}_i^{\mathcal{Q}}(M,N) \right) - i \leqslant \operatorname{reg}(M) + \operatorname{reg}(N) \quad \text{for every } 0 \leqslant i \leqslant d.$

(Chardin) If $\dim(\operatorname{Tor}_1^Q(M, N)) \leq 1$, then

$$\max_{0 \leqslant i \leqslant d} \left\{ \operatorname{reg} \left(\operatorname{Tor}_i^{\mathcal{Q}}(M, N) \right) - i \right\} = \operatorname{reg}(M) + \operatorname{reg}(N).$$

Some existing results in the literature related to our work

(Eisenbud-Huneke-Ulrich, 2006) If $\dim(\operatorname{Tor}_1^Q(M,N)) \leq 1$, then

 $\operatorname{reg}\left(\operatorname{Tor}_{i}^{\mathcal{Q}}(M,N)\right)-i\leqslant\operatorname{reg}(M)+\operatorname{reg}(N)\quad\text{for every }0\leqslant i\leqslant d.$

(Chardin) If
$$\dim(\operatorname{Tor}_1^Q(M,N)) \leq 1$$
, then

$$\max_{0 \leqslant i \leqslant d} \left\{ \operatorname{reg} \left(\operatorname{Tor}_i^{\mathcal{Q}}(M, N) \right) - i \right\} = \operatorname{reg}(M) + \operatorname{reg}(N).$$

(Chardin - Divaani-Aazar, 2008) If $\dim(M \otimes_Q N) \leq 1$, then

$$\max_{0 \leqslant i \leqslant d} \left\{ \operatorname{reg} \left(\operatorname{Ext}_{\mathcal{Q}}^{i}(M, N) \right) + i \right\} = \operatorname{reg}(N) - \operatorname{indeg}(M),$$

where $\operatorname{indeg}(M) := \inf \{ n \in \mathbb{Z} : M_n \neq 0 \}.$

Theorem (Chardin)

Suppose *S* is a standard graded ring over a field, but *S* is not a polynomial ring. Let $d := \min\{\dim(M), \dim(N)\}$. If $\dim(\operatorname{Tor}_i^S(M, N)) \leq 1 \forall i \geq i_0$, then

$$\operatorname{reg}\left(\operatorname{Tor}_{i}^{S}(M,N)\right) \leqslant i + \operatorname{reg}(M) + \operatorname{reg}(N) + \left\lfloor \frac{i+d}{2} \right\rfloor (\operatorname{reg}(S) - 1) \; \forall \; i \geqslant i_{0}.$$

Theorem (Chardin)

Suppose *S* is a standard graded ring over a field, but *S* is not a polynomial ring. Let $d := \min\{\dim(M), \dim(N)\}$. If $\dim(\operatorname{Tor}_i^S(M, N)) \leq 1 \forall i \geq i_0$, then

$$\operatorname{reg}\left(\operatorname{Tor}_{i}^{S}(M,N)\right) \leqslant i + \operatorname{reg}(M) + \operatorname{reg}(N) + \left\lfloor \frac{i+d}{2} \right\rfloor (\operatorname{reg}(S) - 1) \; \forall \; i \geqslant i_{0}.$$

Theorem (– , Puthenpurakal, 2019)

Set $A := Q/(\mathbf{f})$, where $Q = K[X_1, \dots, X_d]$, and $\mathbf{f} = f_1, \dots, f_c$ is a homogeneous Q-regular sequence. Then

• reg
$$\left(\operatorname{Ext}_{A}^{i}(M, I^{n}N)\right) \leq \rho_{N}(I) \cdot n - w \cdot \left\lfloor \frac{i}{2} \right\rfloor + e$$
 for all $i, n \geq 0$,

$$\ \, {\rm Som}\left({\rm Ext}^i_A(M,N/I^nN)\right)\leqslant \rho_N(I)\cdot n-w\cdot\left\lfloor\frac{i}{2}\right\rfloor+e' \quad {\rm for \ all} \ i,n\geqslant 0,$$

where $e, e' \in \mathbb{Z}$, $w := \min\{\deg(f_j) : 1 \leq j \leq c\}$, and

 $\rho_N(I)$ is an invariant defined in terms of reduction ideals of I with respect to N.

Over graded complete intersection rings:

Question

For $\ell \in \{0,1\}$, do there exist $a_\ell, a'_\ell \in \mathbb{Z}_{>0}$ and $e_\ell, e'_\ell \in \mathbb{Z} \cup \{-\infty\}$ such that

• reg
$$\left(\operatorname{Ext}_{A}^{2i+\ell}(M,N)\right) = -a_{\ell} \cdot i + e_{\ell}$$
 for all $i \gg 0$?

Our main results.

We (jointly with Chardin and Nemati) proved that:

- the answer to (i) is positive, even in a more general situation, while
- 2 the answer to (ii) is negative. We found examples for that.
- Output: However, if dim (Tor^A_i(M,N)) ≤ 1 for all i ≫ 0, the second question does have a positive answer.

Theorem (Chardin, –, Nemati, 2022)

Let Q be a standard graded Noetherian algebra, $A := Q/(\mathbf{f})$, where $\mathbf{f} := f_1, \ldots, f_c$ is a homogeneous *Q*-regular sequence. Let *M* and *N* be finitely generated graded A-modules such that $\operatorname{Ext}_{O}^{i}(M,N) = 0$ for all $i \gg 0$. Then

• for every $\ell \in \{0, 1\}$, there exist $a_{\ell} \in \{\deg(f_i) : 1 \leq j \leq c\}$ and $e_{\ell} \in \mathbb{Z} \cup \{-\infty\}$ such that

$$\operatorname{reg}\left(\operatorname{Ext}_{A}^{2i+\ell}(M,N)\right) = -a_{\ell} \cdot i + e_{\ell} \quad \text{for all } i \gg 0.$$

if further O is *local or the epimorphic image of a Gorenstein ring, M has finite projective dimension over O and

$$\dim\left(\operatorname{Tor}_{i}^{A}(M,N)\right)\leqslant 1\quad\text{for all }i\gg 0,$$

then, for every $\ell \in \{0, 1\}$, there exist $a'_{\ell} \in \{\deg(f_i) : 1 \leq i \leq c\}$ and $e'_{\ell} \in \mathbb{Z} \cup \{-\infty\}$ such that

$$\operatorname{reg}\left(\operatorname{Tor}_{2i+\ell}^A(M,N)\right) = a'_\ell \cdot i + e'_\ell \quad \text{for all } i \gg 0.$$

Example (Chardin, -, Nemati, 2022)

Let Q := K[Y, Z, V, W] be a polynomial ring with usual grading over a field K, and $A := Q/(Y^2, Z^2)$. Write A = K[y, z, v, w]. Fix an integer $m \ge 1$. Set

$$M := \operatorname{Coker} \left(\begin{bmatrix} y & z & 0 & 0 \\ -v^m & -w^m & y & z \end{bmatrix} : \begin{array}{ccc} A(-m)^2 & & A(-m+1) \\ \bigoplus & & \bigoplus \\ A(-1)^2 & & A \end{array} \right)$$

and N := A/(y, z). Then, for every $i \ge 1$, we have

•
$$\operatorname{indeg}\left(\operatorname{Ext}_{A}^{i}(M,N)\right) = -i - m + 1$$
 and $\operatorname{reg}\left(\operatorname{Ext}_{A}^{i}(M,N)\right) = -i.$

• indeg $(\operatorname{Tor}_i^A(M,N)) = i$ and reg $(\operatorname{Tor}_i^A(M,N)) = (m+1)i + (2m-2).$

Remark

- In this example, dim $(\operatorname{Tor}_i^A(M, N)) = 2$ for all $i \gg 0$.
- $\operatorname{reg}\left(\operatorname{Tor}_{i}^{A}(M,N)\right)$ is eventually linear, but the leading term depends on *M*.
- It shows that the finiteness result for $\operatorname{Tor}^{A}_{*}(M, N)$ that we proved under the condition that $\operatorname{Tor}^{A}_{\ll 0}(M, N) \leq 1$ can fail if this hypothesis is removed.

Example 2, showing that reg $(Tor_i^A(M, N))$ can be non-linear

Example (Chardin, -, Nemati, 2022)

Let Q := K[X, Y, Z, U, V, W] be a standard graded polynomial ring over a field *K* of characteristic 2, and $A := Q/(X^2, Y^2, Z^2)$. Write A = K[x, y, z, u, v, w]. Set

$$M := \operatorname{Coker} \left(\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ u & v & w & x & y & z \end{bmatrix} : A(-1)^6 \longrightarrow A^2 \right) \quad \text{and} \quad N := A/(x, y, z).$$

Then, for every $n \ge 1$, we have

• indeg
$$(\operatorname{Ext}_{A}^{n}(M,N)) = \operatorname{reg}(\operatorname{Ext}_{A}^{n}(M,N)) = -n$$

• indeg $(\operatorname{Tor}_n^A(M,N)) = n$ and reg $(\operatorname{Tor}_n^A(M,N)) = n + f(n)$, where

$$f(n) := \begin{cases} 2^{l+1} - 2 & \text{if } n = 2^l - 1\\ 2^{l+1} - 1 & \text{if } 2^l \leqslant n \leqslant 2^{l+1} - 2 \end{cases} \text{ for all integers } l \geqslant 1.$$

Remark

In this example, the following sets are dense in [2, 3]:

 $\{\operatorname{reg}(\operatorname{Tor}_{2n}^{A}(M,N))/2n:n \ge 1\} \text{ and } \{\operatorname{reg}(\operatorname{Tor}_{2n+1}^{A}(M,N))/2n+1:n \ge 1\}.$

Hypothesis

The ring Q is a standard graded Noetherian algebra.

- 3 $A = Q/(\mathbf{f})$, where $\mathbf{f} := f_1, \ldots, f_c$ is a homogeneous *Q*-regular sequence.
- M and N are finitely generated graded A-modules such that Extⁱ_Q(M,N) = 0 for all i ≫ 0.

Remark

We have studied the graded modules

$$\bullet \operatorname{Ext}^{\star}_{A}(M,N) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Ext}^{i}_{A}(M,N), \quad \operatorname{Tor}^{A}_{\star}(M,N) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Tor}^{A}_{-i}(M,N),$$

over the graded ring $T := A[y_1, ..., y_c]$ with $deg(y_j) = 2$ for $1 \le j \le c$. These y_j are induced by the Eisenbud operators. Finite generation of $\operatorname{Ext}_{A}^{\star}(M,N)$ and $H_{A_{+}}^{l}(\operatorname{Tor}_{\star}^{A}(M,N))^{\vee}$

Theorem (Gulliksen)

The graded module $\operatorname{Ext}_{A}^{\star}(M, N)$ is finitely generated over $A[y_{1}, \ldots, y_{c}]$ provided $\operatorname{Ext}_{Q}^{i}(M, N) = 0$ for all $i \gg 0$.

Hence the bigraded module Ext^{*}_A(M, N) := ⊕_{i∈ℤ} Extⁱ_A(M, N) is also finitely generated over T = K[x₁,..., x_d, y₁,..., y_c].

Theorem (Chardin, -, Nemati, 2022)

If dim $(\operatorname{Tor}_i^A(M, N)) \leq 1$ for all $i \gg 0$, then

$$H^{0}_{A_{+}}\left(\operatorname{Tor}^{A}_{\star}(M,N)\right)^{\vee} := \bigoplus_{i \ge 0} H^{0}_{A_{+}}\left(\operatorname{Tor}^{A}_{i}(M,N)\right)^{\vee} \text{ and }$$
$$H^{1}_{A_{+}}\left(\operatorname{Tor}^{A}_{\star}(M,N)\right)^{\vee} := \bigoplus_{i \ge 0} H^{1}_{A_{+}}\left(\operatorname{Tor}^{A}_{i}(M,N)\right)^{\vee}$$

are finitely generated over $A[y_1, \ldots, y_c] = K[x_1, \ldots, x_d, y_1, \ldots, y_c]$.

 Hence the linearity of regularity of Ext and Tor follows from a theorem due to Bagheri-Chardin-Hà.

- A. Bagheri, M. Chardin and H.T. Hà, The eventual shape of Betti tables of powers of ideals, Math. Res. Lett. 20, 6 (2013), 1033-1046.
- M. Chardin, On the behavior of Castelnuovo-Mumford regularity with respect to some functors, arXiv:0706.2731.
- M. Chardin, D. Ghosh and N. Nemati, *The (ir)regularity of Tor and Ext*, Trans. Amer. Math. Soc. 375 (2022), 47–70.
- D. Eisenbud, C. Huneke and B. Ulrich, The regularity of Tor and graded Betti numbers, Amer. J. Math. 128, 3 (2006), 573-605.
- D. Ghosh and T. J. Puthenpurakal, An asymptotic bound for Castelnuovo-Mumford regularity of certain Ext modules over graded complete intersection rings, J. Algebra 537 (2019), 278–296.

Thank you!