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Importance of Castelnuovo–Mumford regularity

Castelnuovo–Mumford regularity is a kind of universal bound for
important invariants of graded modules such as

1 the degree of minimal generators of syzygy modules, and
2 the maximum non-vanishing degree of local cohomology modules.

Application 1.

The nth syzygy module ΩQ
n (M) is generated by homogeneous elements of

degree 6 reg(M) + n.

In fact, regularity of M is defined to be such a minimum possible bound.

Application 2.
The regularity of M helps us to compute Hilbert polynomial of M.

More precisely, for all n > reg(M), the Hilbert function value of M at n
coincides with Hilbert polynomial value at n. It follows from another definition,
where Q = Q0[x1, . . . , xd] is a Noetherian standard N-graded ring.

reg(M) := max
{

end
(

Hi
Q+

(M)
)

+ i
∣∣∣ 0 6 i 6 dim(M)

}
.
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Some existing results in the literature related to our work

1 (Eisenbud-Huneke-Ulrich, 2006) If dim(TorQ
1 (M,N)) 6 1, then

reg
(

TorQ
i (M,N)

)
− i 6 reg(M) + reg(N) for every 0 6 i 6 d.

2 (Chardin) If dim(TorQ
1 (M,N)) 6 1, then

max
06i6d

{
reg
(

TorQ
i (M,N)

)
− i
}

= reg(M) + reg(N).

3 (Chardin - Divaani-Aazar, 2008) If dim(M ⊗Q N) 6 1, then

max
06i6d

{
reg
(

Exti
Q(M,N)

)
+ i
}

= reg(N)− indeg(M),

where indeg(M) := inf{n ∈ Z : Mn 6= 0}.
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Linear bounds of regularity of Tor and Ext over complete intersections

Theorem (Chardin)
Suppose S is a standard graded ring over a field, but S is not a polynomial
ring. Let d := min{dim(M),dim(N)}. If dim

(
TorS

i (M,N)
)
6 1 ∀ i > i0, then

reg
(

TorS
i (M,N)

)
6 i + reg(M) + reg(N) +

⌊
i + d

2

⌋
(reg(S)− 1) ∀ i > i0.

Theorem ( – , Puthenpurakal, 2019)
Set A := Q/(f), where Q = K[X1, . . . ,Xd], and f = f1, . . . , fc is a homogeneous
Q-regular sequence. Then

1 reg
(
Exti

A(M, InN)
)
6 ρN(I) · n− w ·

⌊
i
2

⌋
+ e for all i, n > 0,

2 reg
(
Exti

A(M,N/InN)
)
6 ρN(I) · n− w ·

⌊
i
2

⌋
+ e′ for all i, n > 0,

where e, e′ ∈ Z, w := min{deg(fj) : 1 6 j 6 c}, and
ρN(I) is an invariant defined in terms of reduction ideals of I with respect to N.
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The main questions we will study in this talk

Over graded complete intersection rings:

Question
For ` ∈ {0, 1}, do there exist a`, a′` ∈ Z>0 and e`, e′` ∈ Z ∪ {−∞} such that

i reg
(

Ext2i+`
A (M,N)

)
= −a` · i + e` for all i� 0 ?

ii reg
(
TorA

2i+`(M,N)
)

= a′` · i + e′` for all i� 0 ?

Our main results.
We (jointly with Chardin and Nemati) proved that:

1 the answer to (i) is positive, even in a more general situation, while
2 the answer to (ii) is negative. We found examples for that.
3 However, if dim

(
TorA

i (M,N)
)
6 1 for all i� 0, the second question does

have a positive answer.
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The main positive results

Theorem (Chardin, – , Nemati, 2022)
Let Q be a standard graded Noetherian algebra, A := Q/(f), where
f := f1, . . . , fc is a homogeneous Q-regular sequence. Let M and N be finitely
generated graded A-modules such that Exti

Q(M,N) = 0 for all i� 0. Then
i for every ` ∈ {0, 1}, there exist a` ∈ {deg(fj) : 1 6 j 6 c} and

e` ∈ Z ∪ {−∞} such that

reg
(

Ext2i+`
A (M,N)

)
= −a` · i + e` for all i� 0.

ii if further Q is *local or the epimorphic image of a Gorenstein ring, M has
finite projective dimension over Q and

dim
(

TorA
i (M,N)

)
6 1 for all i� 0,

then, for every ` ∈ {0, 1}, there exist a′` ∈ {deg(fj) : 1 6 j 6 c} and
e′` ∈ Z ∪ {−∞} such that

reg
(

TorA
2i+`(M,N)

)
= a′` · i + e′` for all i� 0.
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Example 1 (the leading term of reg
(
TorA

i (M,N)
)

can be arbitrarily large)

Example (Chardin, – , Nemati, 2022)
Let Q := K[Y, Z,V,W] be a polynomial ring with usual grading over a field K,
and A := Q/(Y2, Z2). Write A = K[y, z, v,w]. Fix an integer m > 1. Set

M := Coker

[ y z 0 0
−vm −wm y z

]
:

A(−m)2⊕
A(−1)2

−→
A(−m + 1)⊕

A


and N := A/(y, z). Then, for every i > 1, we have

i indeg
(
Exti

A(M,N)
)

= −i− m + 1 and reg
(
Exti

A(M,N)
)

= −i.
ii indeg

(
TorA

i (M,N)
)

= i and reg
(
TorA

i (M,N)
)

= (m + 1)i + (2m− 2).

Remark
i In this example, dim

(
TorA

i (M,N)
)

= 2 for all i� 0.
ii reg

(
TorA

i (M,N)
)

is eventually linear, but the leading term depends on M.
iii It shows that the finiteness result for TorA

∗(M,N) that we proved under
the condition that TorA

�0(M,N) 6 1 can fail if this hypothesis is removed.
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Example 2, showing that reg
(
TorA

i (M,N)
)

can be non-linear

Example (Chardin, – , Nemati, 2022)
Let Q := K[X, Y, Z,U,V,W] be a standard graded polynomial ring over a field
K of characteristic 2, and A := Q/(X2, Y2, Z2). Write A = K[x, y, z, u, v,w]. Set

M := Coker

([
x y z 0 0 0
u v w x y z

]
: A(−1)6 −→ A2

)
and N := A/(x, y, z).

Then, for every n > 1, we have
i indeg (Extn

A(M,N)) = reg (Extn
A(M,N)) = −n.

ii indeg
(
TorA

n (M,N)
)

= n and reg
(
TorA

n (M,N)
)

= n + f (n), where

f (n) :=

{
2l+1 − 2 if n = 2l − 1
2l+1 − 1 if 2l 6 n 6 2l+1 − 2

for all integers l > 1.

Remark
i In this example, the following sets are dense in [2, 3]:

{reg(TorA
2n(M,N))/2n : n > 1} and {reg(TorA

2n+1(M,N))/2n+1 : n > 1}.
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Sketch of the proof of the main result

Hypothesis
1 The ring Q is a standard graded Noetherian algebra.
2 A = Q/(f), where f := f1, . . . , fc is a homogeneous Q-regular sequence.
3 Set wj := deg(fj).
4 M and N are finitely generated graded A-modules such that

Exti
Q(M,N) = 0 for all i� 0.

Remark
We have studied the graded modules

1 Ext?A(M,N) :=
⊕

i∈Z Exti
A(M,N), TorA

?(M,N) :=
⊕

i∈Z TorA
−i(M,N),

2 Hl
A+

(
TorA

?(M,N)
)∨ :=

⊕
i∈Z Hl

A+

(
TorA

i (M,N)
)∨

over the graded ring T := A[y1, . . . , yc] with deg(yj) = 2 for 1 6 j 6 c.
These yj are induced by the Eisenbud operators.
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Finite generation of Ext?A(M,N) and Hl
A+

(
TorA

?(M,N)
)∨

Theorem (Gulliksen)
The graded module Ext?A(M,N) is finitely generated over A[y1, . . . , yc]

provided Exti
Q(M,N) = 0 for all i� 0.

Hence the bigraded module Ext?A(M,N) :=
⊕

i∈Z Exti
A(M,N) is also

finitely generated over T = K[x1, . . . , xd, y1, . . . , yc].

Theorem (Chardin, – , Nemati, 2022)

If dim
(
TorA

i (M,N)
)
6 1 for all i� 0, then

H0
A+

(
TorA

?(M,N)
)
∨ :=

⊕
i>0

H0
A+

(
TorA

i (M,N)
)
∨ and

H1
A+

(
TorA

?(M,N)
)
∨ :=

⊕
i>0

H1
A+

(
TorA

i (M,N)
)
∨

are finitely generated over A[y1, . . . , yc] = K[x1, . . . , xd, y1, . . . , yc].

Hence the linearity of regularity of Ext and Tor follows from a theorem
due to Bagheri-Chardin-Hà.
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Thank you!
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