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Definitions and notations

Definition (Symbolic power)

Let R be a Noetherian ring. The k-th symbolic power of I ⊂ R is defined as

I (k) =
⋂

P∈Min(R/I )

(I kRP ∩ R).

Definition (Regularity)

Let R be a standard graded polynomial ring over a field and m be its maximal homogeneous ideal.
Suppose M is a finitely generated graded R-module and suppose

0 →
⊕
j∈Z

R(−j)βp,j (M) · · · →
⊕
j∈Z

R(−j)β0,j (M) → M → 0

is its minimal free resolution. Then the regularity of M is given by

regM = max{j − i | βi,j (M) ̸= 0},

= max{j + i | H i
m(M)j ̸= 0}.
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Definitions and notations

Definition (Weighted oriented graph)

A weighted oriented graph is a graph D = (V (D),E(D),w), where V (D) is the vertex set of D,
E(D) = {(x , y) | there is an edge from vertex x to vertex y} is the edge set of D, and
w : V (D) → N is a map, called weight function.

Definition (Edge Ideal)

The edge ideal of D is defined as I (D) = (xix
w(xj )

j | (xi , xj ) ∈ E(D)).

V+ = {x ∈ V (D) | w(x) > 1}.
If V+ are sinks then I (D) has only minimal associated primes.
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Minh's Conjecture

Minh's Conjecture

Let G be a simple graph. Then reg(I (G)(k)) = reg(I (G)k ) for all k ≥ 1.

Minh, Nam, Phong, Thuy and Vu (2022) proved that reg(I (G)(k)) = reg(I (G)k ) for any
simple graphs with k = 2, 3.

Question

Let D be a weighted oriented graph. Is reg(I (D)(k)) = reg(I (D)k ) for all k ≥ 1?

Mandal and Pradhan (2021) proved that if D is a weighted oriented odd cycle such that
V+ are sinks then reg(I (D)(k)) ≤ reg(I (D)k ) for all k ≥ 1.
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Regularity comparison of symbolic and ordinary powers

Setting

Let D be a weighted oriented graph having at least one induced subgraph which is a directed line
with edges (y , x), (x , z) ∈ E(D) and w(x) > 1.

Theorem (–, Nanduri)

Let D be a weighted oriented graph D as in the above setting. Then

reg(I (D)(k)) ≤ reg(I (D)k ) for all k ≥ 2.

Corollary (–, Nanduri)

Let D be a weighted oriented graph whose underlying graph is bipartite. Then

reg(I (D)(k)) ≤ reg(I (D)k ) for all k ≥ 2.
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Example

Figure 1: Cohen-Macaulay weighted oriented tree

Example
1 Let w1 = 6,w2 = 4,w3 = 7. Then by Macaulay2 we have,

reg(I (D)(2)) = 23 < reg(I (D)2) = 24

reg(I (D)(3)) = 30 < reg(I (D)3) = 32.

2 Let w1 = 6,w2 = 4,w3 = 3. Then by Macaulay2 we have,

reg(I (D)(2)) = 19 = reg(I (D)2) = 19

reg(I (D)(3)) = 26 = reg(I (D)3) = 26.
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Regularity comparison of small symbolic and ordinary powers

Theorem (–, Nanduri)

Let D be any weighted oriented graph such that V+ are sinks. Then

reg(I (D)(k)) ≤ reg(I (D)k ) for k = 2, 3.

Notation

F := the family of {xi , xj , xr} such that the induced subgraph on {xi , xj , xr} in G is a
triangle.

N[H] :=
⋃

x∈V (H)

N[x], for any subgraph H of D.

Theorem (–, Nanduri)

Let D be a weighted oriented graph such that V+ are sinks and underlying graph G has no induced
triangles or the triangles are at most at a distance 2 from every vertex. Then

reg(I (D)2) ≤ max

reg(I (D)(2)),
∑

x∈N[T ]

w(x)− |N[T ]|+ 1 +
∑
x∈T

w(x) | T ∈ F

 .
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Sharp Upper Bound

Figure 2: Cohen-Macaulay weighted oriented graph

Example

For above graph D, I (D) = (x1x2, x2x3, x3x1, x1y3
1 , x2y

9
2 , x3y

10
3 ). Using Macaulay2,

reg(I (D)2) = 23 =
3∑

i=1

w(xi ) +
3∑

i=1

w(yi )− 6 + 1 +
3∑

i=1

w(xi ). Note that

reg(I (D)(2)) = 22 < reg(I (D)2).
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Equality of regularity of second symbolic and ordinary powers

Corollary, (–, Nanduri)

Let D be a weighted oriented graph such that V+ are sinks and underlying graph G has no induced
triangles or the triangles are at most at a distance 2 from every vertex. Suppose for all T ∈ F ,
|N[T ] ∩ V+| ≤ 1. Then reg(I (D)(2)) = reg(I (D)2).

Corollary (–, Nanduri)

Let D be a weighted oriented gap-free graph such that V+ are sinks. Suppose for all T ∈ F ,
|N[T ] ∩ V+| ≤ 1. Then reg(I (D)(2)) = reg(I (D)2).
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Degree Complex

For a = (a1, . . . , an) ∈n, set xa = xa11 · · · xann and Ga = {i ∈ [n] | ai < 0}, where [n] = {1, . . . , n}.
For every subset F ⊆ [n], let RF = R[x−1

i | i ∈ F ].

Degree Complex

The degree complex of I with respect to a is defined as

∆a(I ) = {F \ Ga | Ga ⊆ F , xa ̸∈ IRF }.

Link of F in ∆

Let ∆ be a simplicial complex and F be a face in ∆. Then the Link of F in ∆ is denoted by lk∆F
and defined as

lk∆F = {G ∈ ∆ | F ∪ G ∈ ∆,F ∩ G = ∅}.

Lemma (Minh, Nam, Phong, Thuy and Vu (2022))

Let I be a monomial ideal in R. Then

reg(R/I ) =max{|a|+ i | a ∈ Nn, i ≥ 0, H̃i−1(lk∆a(I )F ;K) ̸= 0 for some

F ∈ ∆a(I ) with F ∩ supp a = ∅}.
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