Symbolic Powers of Edge Ideals of Weighted Oriened Graphs

Dr. Mousumi Mandal

(joint work with Dipak Kumar Pradhan) Indian Institute of Technology Kharagpur, India 4th May 2023

Introduction	Preliminaries	Our Results	References
000	00000	0000000	000
Outline			

Introduction

2 Preliminaries

Our Results

Introduction		Our Results	References
000	00000	0000000	000

Let R be a notherian ring, and I an ideal in R. The n-th symbolic power of I is defined to by

$$I^{(n)} = \bigcap_{P \in \operatorname{Ass}(R/I)} (I^n R_P \cap R).$$

Introduction		Our Results	References
000	00000	0000000	000

Let R be a notherian ring, and I an ideal in R. The n-th symbolic power of I is defined to by

$$I^{(n)} = \bigcap_{P \in \operatorname{Ass}(R/I)} (I^n R_P \cap R).$$

Let I be an ideal in a noetherian ring R. (a) For all $n \ge 1$, $I^n \subseteq I^{(n)}$. (b) If $a \ge b$, then $I^{(a)} \subseteq I^{(b)}$. (c) For all $a, b \ge 1$, $I^{(a)}I^{(b)} \subseteq I^{(a+b)}$

Introduction		Our Results	References
000	00000	0000000	000

Theorem (Nagata, Zariski)

Let \mathbb{K} be a perfect field. Let I be a radical ideal in a polynomial ring $R = \mathbb{K}[x_1, \ldots, x_m]$. Then for all $n \in \mathbb{N}$, we have

$$I^{(n)} = \left(f \mid \frac{\partial^{|a|} f}{\partial a} \in I \text{ for all } a \in \mathbb{N}^m \text{ with } |a| \le n-1\right).$$

Introduction	Preliminaries	Our Results	References
000	00000	0000000	000
Outline			

Introduction

Introduction 000	Preliminaries ○●○○○	Our Results 00000000	References 000
Simple Grap	ohs		
Definition			
A finite graph G	is a pair $G = (V(G), E(G))$) where V(G)= $\{x_1, \ldots, x_n\}$	is the set of

vertices of G, and E(G) is a collection of two element subsets of V(G), usually called the edges of G.

Introduction 000	Preliminaries 00000	Our Results 00000000	References 000
Simple Graphs			

A finite graph G is a pair G = (V(G), E(G)) where $V(G) = \{x_1, \ldots, x_n\}$ is the set of vertices of G, and E(G) is a collection of two element subsets of V(G), usually called the edges of G.

Definition

The edge ideal of a simple graph G is defined to be

$$I(G) = \langle x_i x_j \mid \{x_i, x_j\} \in E(G) \rangle \subset R = k[x_1, \dots, x_n]$$

Introduction	Preliminaries	Our Results	References
000	O●OOO	00000000	000
Simple Graphs			

A finite graph G is a pair G = (V(G), E(G)) where $V(G) = \{x_1, \ldots, x_n\}$ is the set of vertices of G, and E(G) is a collection of two element subsets of V(G), usually called the edges of G.

Definition

The edge ideal of a simple graph G is defined to be

$$I(G) = \langle x_i x_j \mid \{x_i, x_j\} \in E(G) \rangle \subset R = k[x_1, \dots, x_n]$$

		0000000	000
Weighted or	iented graphs		

A weighted oriented graph is a triplet D = (V(D), E(D), w), where V(D) is the vertex set, E(D) is the edge set and w is a weight function $w : V(D) \longrightarrow \mathbb{N}^+$, where $\mathbb{N}^+ = \{1, 2, \ldots\}$.

Weighted o	riented graphs		
000	0000	0000000	000
	Preliminaries	Our Results	References

A weighted oriented graph is a triplet D = (V(D), E(D), w), where V(D) is the vertex set, E(D) is the edge set and w is a weight function $w : V(D) \longrightarrow \mathbb{N}^+$, where $\mathbb{N}^+ = \{1, 2, \ldots\}$.

Definition

The edge ideal of D is defined as $I(D) = (x_i x_j^{w_j} | (x_i, x_j) \in E(D)).$

Waighted or	iented graphs		
000	00000	0000000	000
	Preliminaries	Our Results	References

A weighted oriented graph is a triplet D = (V(D), E(D), w), where V(D) is the vertex set, E(D) is the edge set and w is a weight function $w : V(D) \longrightarrow \mathbb{N}^+$, where $\mathbb{N}^+ = \{1, 2, \ldots\}$.

Definition

The edge ideal of D is defined as $I(D) = (x_i x_j^{w_j} | (x_i, x_j) \in E(D)).$

000	00000	0000000	000
Symbolic powers	of weighted orient	ed graphs	

Theorem (C. Bocci et al.,2016)

Let G be a graph on vertices $\{x_1, \ldots, x_n\}$, $I = I(G) \subseteq k[x_1, \ldots, x_n]$ be the edge ideal of G and V_1, \ldots, V_r be the minimal vertex covers of G. Let P_j be the monomial prime ideal generated by the variables in V_j . Then

$$I = P_1 \cap \dots \cap P_r$$

Symbolic powers	of weighted oriente	ed graphs	
	00000		
	Preliminaries	Our Results	References

Theorem (C. Bocci et al., 2016)

Let G be a graph on vertices $\{x_1, \ldots, x_n\}$, $I = I(G) \subseteq k[x_1, \ldots, x_n]$ be the edge ideal of G and V_1, \ldots, V_r be the minimal vertex covers of G. Let P_j be the monomial prime ideal generated by the variables in V_j . Then

$$I = P_1 \cap \dots \cap P_r$$

and

$$I^{(m)} = P_1^m \cap \dots \cap P_r^m.$$

	Preliminaries	Our Results	References
000	00000	0000000	000

Theorem (Y. Pitones et al., 2019)

Let D be a weighted oriented graph and C_1, \ldots, C_s are the strong vertex covers of D, then the irredundant irreducible decomposition of I(D) is

 $I(D) = I_{C_1} \cap \cdots \cap I_{C_s}$

where each $I_{C_i} = (L_1^D(C_i) \cup \{x_j^{w(x_j)} \mid x_j \in L_2^D(C_i) \cup L_3^D(C_i)\}), \operatorname{rad}(I_{C_i}) = P_i = (C_i).$

	Preliminaries	Our Results	References
000	00000	0000000	000

Theorem (Y. Pitones et al., 2019)

Let D be a weighted oriented graph and C_1, \ldots, C_s are the strong vertex covers of D, then the irredundant irreducible decomposition of I(D) is

 $I(D) = I_{C_1} \cap \cdots \cap I_{C_s}$

where each $I_{C_i} = (L_1^D(C_i) \cup \{x_j^{w(x_j)} \mid x_j \in L_2^D(C_i) \cup L_3^D(C_i)\}), \operatorname{rad}(I_{C_i}) = P_i = (C_i).$

Let $I \subset R = k[x_1, \ldots, x_n]$ and $I = Q_1 \cap \cdots \cap Q_m$ be a primary decomposition of ideal I. For $P \in \operatorname{Ass}(R/I)$, we denote $Q_{\subseteq P}$ to be the intersection of all Q_i with $\sqrt{Q_i} \subseteq P$. If C is a strong vertex cover of a weighted oriented graph D, then $(C) \in \operatorname{Ass}(R/I(D))$. We denote $I_{\subseteq C}$ as $I_{\subseteq(C)}$.

Lemma (S. Cooper et al.,2017)

Let I be the edge ideal of a weighted oriented graph D and C_1, \ldots, C_r are the maximal strong vertex covers of D. Then

$$I^{(s)} = (I_{\subseteq C_1})^s \cap \dots \cap (I_{\subseteq C_r})^s.$$

		Our Results	References
000	00000	0000000	000
Outline			

Introduction

 Introduction
 Preliminaries
 Our Results
 References

 000
 0000000
 0000000
 000

 Comparing symbolic powers of edge ideals of weighted
 oriented graphs

Question: When is $I^{(s)} = I^s$ for all $s \ge 1$?

 Introduction
 Preliminaries
 Our Results
 References

 0000
 00000
 00000
 0000

 Comparing symbolic powers of edge ideals of weighted
 oriented graphs
 References

Question: When is $I^{(s)} = I^s$ for all $s \ge 1$?

Theorem (A.Simis et al., 1994)

For an ideal I = I(G), we have $I^{(s)} = I^s$ for all $s \ge 1$ if and only if G is bipartite.

 Introduction
 Preliminaries
 Our Results
 References

 000
 00000
 0000000
 0000

 Comparing symbolic powers of edge ideals of weighted
 oriented graphs
 References

Question: When is $I^{(s)} = I^s$ for all $s \ge 1$?

Theorem (A.Simis et al., 1994)

For an ideal I = I(G), we have $I^{(s)} = I^s$ for all $s \ge 1$ if and only if G is bipartite.

Lemma (M. Mandal and D.K. Pradhan, 2021)

Let D be a weighted oriented graph. If V(D) is a strong vertex cover of D, then $I(D)^{(s)} = I(D)^s$ for all $s \ge 2$.

In [2], if a simple graph contains an induced odd cycle $C_{2n+1} = (x_1, \ldots, x_{2n+1})$, the authors have shown that the (n+1)-th ordinary and symbolic power of its edge ideal are different.

		Our Results	References
000	00000	0000000	000
Comparing	symbolic powers	of weighted oriented	graphs

In [2], if a simple graph contains an induced odd cycle $C_{2n+1} = (x_1, \ldots, x_{2n+1})$, the authors have shown that the (n+1)-th ordinary and symbolic power of its edge ideal are different.

Proposition

Let D be a weighted oriented graph. Let D' be an induced odd cycle with underlying graph $C_{2n+1} = (x_1, \ldots, x_{2n+1})$ where $V(C_{2n+1}) \notin N_D^+(V^+(D))$ and it satisfies the condition " $V(C_{2n+1}) \setminus N_D^+(V^+(D))$ contains one vertex which is not source in D', otherwise, it contains a vertex which is source in D' with trivial weight in D". Then $I(D)^{(n+1)} \neq I(D)^{n+1}$.

Introduction	Preliminaries	Our Results	References
000	00000	0000000	000
Weighted oriented	d graphs with indu	ced odd cycles	

Theorem

Let D be a weighted oriented graph such that each edge of D lies in some induced odd cycle of it. Then V(D) is a strong vertex cover of D if and only if $I(D)^{(s)} = I(D)^s$ for all $s \ge 2$.

Introduction	Preliminaries	Our Results	References
000	00000	0000000	000
Weighted oriented	graphs with indu	ced odd cycles	

Theorem

Let D be a weighted oriented graph such that each edge of D lies in some induced odd cycle of it. Then V(D) is a strong vertex cover of D if and only if $I(D)^{(s)} = I(D)^s$ for all $s \ge 2$.

- odd cycle
- 2 complete graph
- O clique sum of finite number of odd cycles and complete graphs
- **4** complete m-partite graph

Introduction	Preliminaries		References
		00000000	000
Symbolic powers	of weighted	oriented unicyclic graph	าร

Theorem

Let D be a weighted naturally oriented unicyclic graph with a unique odd cycle $C_{2n+1} = (x_1, \ldots, x_{2n+1})$. Then $I(D)^{(s)} = I(D)^s$ for all $s \ge 2$ if and only if $w(x) \ge 2$ when $\deg_D(x) \ge 2$ for all $x \in V(D)$.

Symbolic powers	of weighted oriente	ed even cycles	
000	00000	00000000	000
Introduction	Preliminaries	Our Results	References

Corollary

Let D be a weighted naturally oriented even cycle whose underlying graph is $C_n = (x_1, \ldots, x_n)$, where $n \neq 4$ and at least one vertex of D has non-trivial weight. Then $I(D)^{(s)} = I(D)^s$ for all $s \geq 2$ if and only if all vertices of D have non-trivial weights.

Symbolic powers	of weighted oriente	ed even cycles	
000	00000	00000000	000
Introduction	Preliminaries	Our Results	References

Corollary

Let D be a weighted naturally oriented even cycle whose underlying graph is $C_n = (x_1, \ldots, x_n)$, where $n \neq 4$ and at least one vertex of D has non-trivial weight. Then $I(D)^{(s)} = I(D)^s$ for all $s \geq 2$ if and only if all vertices of D have non-trivial weights.

Proposition

Let D be a weighted naturally oriented even cycle whose underlying graph is $C_4 = (x_1, x_2, x_3, x_4)$ and at least one vertex of D has non-trivial weight. Then $I(D)^{(s)} = I(D)^s$ for all $s \ge 2$ if and only if D satisfies one of the following conditions:

- all vertices of D have non-trivial weights,
- One vertex of D has non-trivial weight,
- Only two non-consecutive vertices of D have non-trivial weights.

		Our Results	References
000	00000	00000000	000
Comparing symb	olic powers of weig	hted oriented grap	ns

Notation

Let D be a weighted oriented graph, where $U \subseteq V^+(D)$ be the set of vertices which are sinks and $w_j = w(x_j)$ if $x_j \in V^+(D)$. Let D' be the weighted oriented graph obtained from D after replacing w_j by $w_j = 1$ if $x_j \in U$. Let $V(D) = V(D') = V = \{x_1, \ldots, x_n\}$. Let $R = k[x_1, \ldots, x_n] = \bigoplus_{i=1}^{\infty} R_d$ be the standard

graded polynomial ring. Consider the map

$$\Phi: R \longrightarrow R$$
 where $x_j \longrightarrow x_j$ if $x_j \notin U$ and $x_j \longrightarrow x_j^{w_j}$ if $x_j \in U$.

d=0

Introduction	Preliminaries	Our Results	References
000	00000	00000000	000
Comparing symbol	olic powers of weig	nted oriented grap	าร

Notation

Let D be a weighted oriented graph, where $U \subseteq V^+(D)$ be the set of vertices which are sinks and $w_j = w(x_j)$ if $x_j \in V^+(D)$. Let D' be the weighted oriented graph obtained from D after replacing w_j by $w_j = 1$ if $x_j \in U$. Let

$$V(D) = V(D') = V = \{x_1, ..., x_n\}$$
. Let $R = k[x_1, ..., x_n] = \bigoplus_{d=0}^{n} R_d$ be the standard

graded polynomial ring. Consider the map

$$\Phi: R \longrightarrow R$$
 where $x_j \longrightarrow x_j$ if $x_j \notin U$ and $x_j \longrightarrow x_j^{w_j}$ if $x_j \in U$.

Theorem

Let I and \tilde{I} be the edge ideals of D and D', respectively. Then $\Phi(\tilde{I}^s) = I^s$ and $\Phi(\tilde{I}^{(s)}) = I^{(s)}$ for all $s \ge 1$.

Introduction	Preliminaries	Our Results	References
000	00000	0000000	000
Comparing sym	bolic powers	of weighted oriented	graphs

Proposition

For each $s \ge 1$, $I(D)^{(s)} = I(D)^s$ if and only if $I(D')^{(s)} = I(D')^s$.

Introduction	Preliminaries	Our Results	References
000	00000	0000000	000
Comparing symbol	olic powers of weig	nted oriented grap	าร

Proposition

For each
$$s \ge 1$$
, $I(D)^{(s)} = I(D)^{s}$ if and only if $I(D')^{(s)} = I(D')^{s}$.

Corollary

Let D be a weighted oriented graph where the vertices of $V^+(D)$ are sinks and its underlying graph is G. Then G is bipartite if and only if $I(D)^{(s)} = I(D)^s$ for all $s \ge 2$.

<u> </u>	00000		000
(omnaring s	vmholic nowers o	t weighted oriented g	franhs

Proposition

For each
$$s \ge 1$$
, $I(D)^{(s)} = I(D)^s$ if and only if $I(D')^{(s)} = I(D')^s$.

Corollary

Let D be a weighted oriented graph where the vertices of $V^+(D)$ are sinks and its underlying graph is G. Then G is bipartite if and only if $I(D)^{(s)} = I(D)^s$ for all $s \ge 2$.

Theorem

Let D be a weighted oriented star graph whose underlying graph is S_n for some $n \ge 2$. Then $I(D)^{(s)} = I(D)^s$ for all $s \ge 2$.

Introduction	Preliminaries	Our Results	References
000	00000	0000000	•00
Outline			

Introduction

		Our Results	References
000	00000	0000000	000
Deferences			
References			

- C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl and T. Vu, The Waldschmidt constant for squarefree monomial ideals, *J. Algebraic Combin.* 44 (2016), no. 4, 875-904.
- [2] H. Dao, A. De Stefani, E. Grifo, C. Huneke, and L. Núñez Betancourt, Symbolic powers of ideals, In Singularities and foliations. geometry, topology and applications, *Springer Proc. Math. Stat.* 222 (2018), Springer, Cham, 387–432.
- [3] P. Gimenez, J. M. Bernal, A. Simis, R. H. Villarreal and C. E. Vivares, Symbolic powers of monomial ideals and Cohen-Macaulay vertex-weighted digraphs, *Singularities, algebraic geometry, commutative algebra, and related topics*, Springer, Cham, (2018), 491-510.
- [4] M. Mandal and D. K. Pradhan, Comparing symbolic powers of edge ideals of weighted oriented graphs, J Algebr Comb (2022), https://doi.org/10.1007/s10801-022-01118-1.
- [5] M. Mandal and D. K. Pradhan, Symbolic powers in weighted oriented graphs, Internat. J. Algebra Comput. 31 (2021), no. 03, 533-549.
- [6] Y. Pitones, E. Reyes and J. Toledo, Monomial ideals of weighted oriented graphs, *Electron. J. Combin.*, **26**(3) (2019), 1-18.
- [7] A. Simis, W. Vasconcelos and R. H. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), 389–416.

