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Definition
Let R be a notherian ring, and I an ideal in R. The n-th symbolic power of I is
defined to by

I(n) =
⋂

P ∈Ass (R/I)

(InRP ∩R).

Let I be an ideal in a noetherian ring R.
(a) For all n ≥ 1, In ⊆ I(n).
(b) If a ≥ b, then I(a) ⊆ I(b) .
(c) For all a, b ≥ 1, I(a)I(b) ⊆ I(a+b)
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Theorem (Nagata, Zariski)
Let K be a perfect field. Let I be a radical ideal in a polynomial ring
R = K[x1, . . . , xm]. Then for all n ∈ N, we have

I(n) =
(

f | ∂|a|f

∂a
∈ I for all a ∈ Nm with |a| ≤ n− 1

)
.
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Simple Graphs

Definition

A finite graph G is a pair G =
(
V (G), E(G)

)
where V(G)={x1, . . . , xn} is the set of

vertices of G, and E(G) is a collection of two element subsets of V (G), usually called
the edges of G.

Definition
The edge ideal of a simple graph G is defined to be

I(G) = 〈xixj | {xi, xj} ∈ E(G)〉 ⊂ R = k[x1, . . . , xn].

x1 x2

x3

I(G) = (x1x2, x2x3, x3x1)
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Weighted oriented graphs

Definition
A weighted oriented graph is a triplet D = (V (D), E(D), w), where V (D) is the vertex
set, E(D) is the edge set and w is a weight function w : V (D) −→ N+, where
N+ = {1, 2, . . .}.

Definition

The edge ideal of D is defined as I(D) = (xix
wj

j |(xi, xj) ∈ E(D)).

x1 x2

x3

2 2

2

I(D1) = (x1x2
2, x2x2

3, x3x2
1)

D1

x1 x2

x3

1 2

2

D2

I(D2) = (x1x2
2, x2x2

3, x1x2
3)
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Symbolic powers of weighted oriented graphs

Theorem (C. Bocci et al.,2016)
Let G be a graph on vertices {x1, . . . , xn}, I = I(G) ⊆ k[x1, . . . , xn] be the edge ideal
of G and V1, . . . , Vr be the minimal vertex covers of G. Let Pj be the monomial prime
ideal generated by the variables in Vj . Then

I = P1 ∩ · · · ∩ Pr

and
I(m) = P m

1 ∩ · · · ∩ P m
r .
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Theorem (Y. Pitones et al., 2019)
Let D be a weighted oriented graph and C1, . . . , Cs are the strong vertex covers of D,
then the irredundant irreducible decomposition of I(D) is

I(D) = IC1 ∩ · · · ∩ ICs

where each ICi = (LD
1 (Ci) ∪ {x

w(xj )
j | xj ∈ LD

2 (Ci) ∪ LD
3 (Ci)}), rad(ICi ) = Pi = (Ci).

Let I ⊂ R = k[x1, . . . , xn] and I = Q1 ∩ · · · ∩Qm be a primary decomposition of ideal
I. For P ∈ Ass(R/I), we denote Q⊆P to be the intersection of all Qi with

√
Qi ⊆ P. If

C is a strong vertex cover of a weighted oriented graph D, then (C) ∈ Ass(R/I(D)).
We denote I⊆C as I⊆(C).

Lemma (S. Cooper et al.,2017)
Let I be the edge ideal of a weighted oriented graph D and C1, . . . , Cr are the maximal
strong vertex covers of D. Then

I(s) = (I⊆C1 )s ∩ · · · ∩ (I⊆Cr )s.
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Comparing symbolic powers of edge ideals of weighted
oriented graphs

Question: When is I(s) = Is for all s ≥ 1?

Theorem (A.Simis et al.,1994)

For an ideal I = I(G), we have I(s) = Is for all s ≥ 1 if and only if G is bipartite.

Lemma (M. Mandal and D.K. Pradhan, 2021)
Let D be a weighted oriented graph. If V (D) is a strong vertex cover of D, then
I(D)(s) = I(D)s for all s ≥ 2.
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Comparing symbolic powers of weighted oriented graphs

In [2], if a simple graph contains an induced odd cycle C2n+1 = (x1, . . . , x2n+1), the
authors have shown that the (n + 1)−th ordinary and symbolic power of its edge ideal
are different.

Proposition

Let D be a weighted oriented graph. Let D′ be an induced odd cycle with underlying
graph C2n+1 = (x1, . . . , x2n+1) where V (C2n+1) * N+

D (V +(D)) and it satisfies the
condition “ V (C2n+1) \N+

D (V +(D)) contains one vertex which is not source in D′,
otherwise, it contains a vertex which is source in D′ with trivial weight in D”. Then
I(D)(n+1) 6= I(D)n+1.
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Weighted oriented graphs with induced odd cycles

Theorem

Let D be a weighted oriented graph such that each edge of D lies in some induced odd
cycle of it. Then V (D) is a strong vertex cover of D if and only if I(D)(s) = I(D)s for
all s ≥ 2.

1 odd cycle

2 complete graph

3 clique sum of finite number of odd cycles and complete graphs

4 complete m−partite graph
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Symbolic powers of weighted oriented unicyclic graphs

Theorem

Let D be a weighted naturally oriented unicyclic graph with a unique odd cycle
C2n+1 = (x1, . . . , x2n+1). Then I(D)(s) = I(D)s for all s ≥ 2 if and only if w(x) ≥ 2
when degD(x) ≥ 2 for all x ∈ V (D).
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Symbolic powers of weighted oriented even cycles

Corollary

Let D be a weighted naturally oriented even cycle whose underlying graph is
Cn = (x1, . . . , xn), where n 6= 4 and at least one vertex of D has non-trivial weight.
Then I(D)(s) = I(D)s for all s ≥ 2 if and only if all vertices of D have non-trivial
weights.

Proposition

Let D be a weighted naturally oriented even cycle whose underlying graph is
C4 = (x1, x2, x3, x4) and at least one vertex of D has non-trivial weight. Then
I(D)(s) = I(D)s for all s ≥ 2 if and only if D satisfies one of the following conditions:

1 all vertices of D have non-trivial weights,
2 one vertex of D has non-trivial weight,
3 only two non-consecutive vertices of D have non-trivial weights.
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Comparing symbolic powers of weighted oriented graphs

Notation

Let D be a weighted oriented graph, where U ⊆ V +(D) be the set of vertices which are
sinks and wj = w(xj) if xj ∈ V +(D). Let D′ be the weighted oriented graph obtained
from D after replacing wj by wj = 1 if xj ∈ U. Let

V (D) = V (D′) = V = {x1, . . . , xn}. Let R = k[x1, . . . , xn] =
∞⊕

d=0

Rd be the standard

graded polynomial ring. Consider the map

Φ : R −→ R where xj −→ xj if xj /∈ Uand xj −→ x
wj

j if xj ∈ U.

Theorem

Let I and Ĩ be the edge ideals of D and D′, respectively. Then Φ(Ĩs) = Is and
Φ(Ĩ(s)) = I(s) for all s ≥ 1.
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Comparing symbolic powers of weighted oriented graphs

Proposition

For each s ≥ 1, I(D)(s) = I(D)s if and only if I(D′)(s) = I(D′)s.

Corollary

Let D be a weighted oriented graph where the vertices of V +(D) are sinks and its
underlying graph is G. Then G is bipartite if and only if I(D)(s) = I(D)s for all s ≥ 2.

Theorem

Let D be a weighted oriented star graph whose underlying graph is Sn for some n ≥ 2.
Then I(D)(s) = I(D)s for all s ≥ 2.
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