Affine Semigroups of Maximal Projective Dimension

**Om Prakash** 

(Joint work with Dr. Kriti Goel and Prof. Indranath Sengupta)



Indian Institute of Technology Gandhinagar



School on Commutative Algebra and Algebraic Geometry in Prime Characteristics, May 02 - 05, 2023

- By an affine semigroup S, we mean a finitely generated (additive) submonoid of N<sup>d</sup> for some positive integer d.
- The cardinality of the minimal generating set of an affine semigroup S is known as the embedding dimension of S, and it is denoted by e(S).
- Let S be minimally generated by  $a_1, \ldots, a_n \in \mathbb{N}^d$ . The semigroup ring  $k[S] = k[t^{a_1}, \ldots, t^{a_n}]$  of S is a k-subalgebra of the polynomial ring  $k[t_1, \ldots, t_d]$ , where  $t^{a_i} = t_1^{a_{i1}} \cdots t_d^{a_{id}}$  for  $a_i = (a_{i1}, \ldots, a_{id})$  and for all  $i = 1, \ldots, n$ .
- Set  $R = k[x_1, \ldots, x_n]$  and define a map  $\pi : R \to k[S]$  given by  $\pi(x_i) = t^{a_i}$  for all  $i = 1, \ldots, n$ . Set deg  $x_i = a_i$  for all  $i = 1, \ldots, n$ .

# Pseudo-Frobenius elements of submonoids of $\mathbb{N}^d$

• R is a multi-graded ring and that  $\pi$  is a degree preserving surjective k-algebra homomorphism. Let  $I_S = \ker \pi$ . Then  $I_S$  is a homogeneous ideal, generated by binomials, called the defining ideal of S.

• Consider the cone of 
$$S$$
 in  $\mathbb{Q}_{\geq 0}^d$ ,  
 $\operatorname{cone}(S) := \{\sum_{i=1}^n \lambda_i a_i \mid \lambda_i \in \mathbb{Q}_{\geq 0}, i = 1, \dots, n\}$   
and set  $\mathcal{H}(S) := (\operatorname{cone}(S) \setminus S) \cap \mathbb{N}^d$ .

#### Definition

An element  $f \in \mathcal{H}(S)$  such that  $f + s \in S$  for all  $0 \neq s \in S$ , is called pseudo- Frobenius elements of S. The set of pseudo-Frobenius elements of S is denoted by PF(S).

$$PF(S) = \{ f \in \mathcal{H}(S) \mid f + a_j \in S, \forall j \in [1, n] \}.$$

We call the cardinality of this set the Betti-type of S.

#### Remark

Pseudo-Frobenius elements may not exist. Indeed, let

 $S = \langle (2,0), (1,1), (0,2) \rangle.$ 

Then S is the subset of points in  $\mathbb{N}^2$  whose sum of coordinates is even. Thus, we have that  $\mathcal{H}(S) + S = \mathcal{H}(S)$ . Therefore  $PF(S) = \emptyset$ .

- If  $\mathcal{H}(S)$  is finite then the set of pseudo-Frobenius elements is always non-empty.
- Consider the partial order  $\leq_S$  on  $\mathbb{N}^d$ , where for all  $x, y \in \mathbb{N}^d$ ,  $x \leq_S y$  if  $y x \in S$ . If  $\mathcal{H}(S)$  is a non-empty finite set then  $PF(S) = \text{Maximals}_{\leq_S} \mathcal{H}(S)$ .

# Pseudo-Frobenius elements of submonoids of $\mathbb{N}^d$

#### Example

Let  $S = \langle (0,1), (3,0), (4,0), (5,0), (1,4), (2,7) \rangle$ .



- $\mathcal{H}(S)$  = Set of all red points.
- $\operatorname{PF}(S) = \{(1,3), (2,6)\}.$

## Maximal projective dimension semigroups

- S has maximal projective dimension(MPD) if  $\operatorname{pdim}_R k[S] = n 1$ . Equivalently, depth<sub>R</sub> k[S] = 1.
- (J. I Garcia-Garcia et. al., 2020) S is MPD if and only if  $PF(S) \neq \emptyset$ .
- (J. I Garcia-Garcia et. al., 2020) If S is a MPD-semigroup, then  $a \in S$  is the S-degree of the (n-2)th minimal syzygy of k[S] if and only if  $a \in \{f + \sum_{i=1}^{n} a_i, f \in PF(S)\}$ .
- The cardinality of the set of pseudo-Frobenius elements is equal to the last Betti number of k[S] over R.

### Maximal projective dimension semigroups

#### Example

Let  $S = \langle a_1 = (2, 11), a_2 = (3, 0), a_3 = (5, 9), a_4 = (7, 4) \rangle$ . Then we have a minimal free resolution of k[S],

$$0 \rightarrow R(-(81,93)) \oplus R(-(94,82)) \rightarrow R^6 \rightarrow R^5 \rightarrow R \rightarrow k[S] \rightarrow 0.$$

Therefore,  $pdim_R k[S] = 3$ . Hence, S is MPD. Thus, we have

$$PF(S) = \{(81, 93) - \sum_{i=1}^{4} a_i, (94, 82) - \sum_{i=1}^{4} a_i\}.$$

Therefore,  $PF(S) = \{(64, 89), (77, 58)\}.$ 

### Definition

Let  $\prec$  be a term order on  $\mathbb{N}^d$ . Then  $F(S)_{\prec} = \max_{\prec} \mathcal{H}(S)$ , if it exists, is called a Frobenius element of S. Note that Frobenius elements of S may not exist. However, if  $|\mathcal{H}(S)| < \infty$ , then S has Frobenius elements.

#### Definition

Fix a term order  $\prec$  such that  $F(S)_{\prec} = \max_{\prec} \mathcal{H}(S)$  exists.

If PF(S) = {F(S) , then S is called a ≺-symmetric semigroup.

If 
$$PF(S) = \{F(S)_{\prec}, F(S)_{\prec}/2\}$$
, then S is called  $\prec$ -pseudo-symmetric.

### $\prec$ -symmetric semigroups

If *H*(*S*) is a non-empty finite set, then *S* is said to be a *C*-semigroup, where *C* denotes the cone of the semigroup. When *S* is a *C*-semigroup, we give a characterization of *≺*-symmetric and *≺*-pseudo-symmetric semigroups.

#### Theorem (-, Goel, Sengupta)

Let S be a C-semigroup and let  $F(S)_{\prec}$  denote the Frobenius element of S with respect to an order  $\prec$ . Then S is a  $\prec$ -symmetric semigroup if and only if for each  $g \in \operatorname{cone}(S) \cap \mathbb{N}^d$ we have:

$$g \in S \iff F(S)_{\prec} - g \notin S.$$

### Theorem (-, Goel, Sengupta)

Let S be a C-semigroup and let  $F(S)_{\prec}$  denote the Frobenius element of S with respect to an order  $\prec$ . Then S is a  $\prec$ -pseudo-symmetric semigroup if and only if  $F(S)_{\prec}$  is even, and for each  $g \in \operatorname{cone}(S) \cap \mathbb{N}^d$  we have:

$$g \in S \iff F(S)_{\prec} - g \notin S \text{ and } g \neq F(S)_{\prec}/2.$$

### Extended Wilf's conjecture

 Let S be a C-semigroup and ≺ be a monomial order satisfying that every monomial is preceded only by a finite number of monomials. Define the Frobenius number of S as

$$\mathcal{N}(F(S)_{\prec}) = |\mathcal{H}(S)| + |\{g \in S \mid g \prec F(S)_{\prec}\}|$$

**Extended Wilf's conjecture**. (J. I. Garcia-Garcia et. al., 2018) Let S be a C-semigroup and  $\prec$  be a monomial order satisfying that every monomial is preceded only by a finite number of monomials. Then

$$\mathcal{N}(F(S)_{\prec}) + 1 \leq e(S) \cdot |\{g \in S \mid g \prec F(S)_{\prec}\}|$$

• On cone(S), define a usual relation  $\leq_c$  as follows:  $g \leq_c f$  if  $g_i \leq f_i$  for all  $i \in [1, d]$ .

### Theorem (-, Goel, Sengupta)

Let S be a C-semigroup with full cone. Then

- S is  $\prec$ -symmetric if and only if  $|\mathcal{H}(S)| = |\{q \in S \mid q \leq_c F(S)_{\prec}\}|.$
- S is ≺-pseudo-symmetric if and only if  $F(S)_{\prec}$  is even and  $|\mathcal{H}(S) \setminus \{F(S)_{\prec}/2\}| = |\{g \in S \mid g \leq_c F(S)_{\prec}\}|$

### Theorem (-, Goel, Sengupta)

Let S be a C-semigroup with full cone. If S is  $\prec$ -symmetric or  $\prec$ -pseudo-symmetric semigroup, then extended Wilf's conjecture holds.

## Extended Wilf's conjecture

### Example

 $S = \langle a_1 = (3,0), a_2 = (5,0), a_3 = (0,1), a_4 = (1,3), a_5 = (2,3) \rangle$ . Let  $\prec$  denote the degree lexicographic order. Then  $F(S)_{\prec} = (7,2)$  and S is  $\prec$ -symmetric.



•  $|\mathcal{H}(S)| = 12 = |\{g \in S \mid g \leq_c F(S)_{\prec}\}|.$ 

• 
$$e(S) = 5$$
,  $\mathcal{N}(F(S)_{\prec}) = 53$ .

### Definition

Let G(S) be the group generated by S. Let A be the minimal generating system of S and  $A = A_1 \cup A_2$  be a nontrivial partition of A. Let  $S_i$  be the submonoid of  $\mathbb{N}^d$  generated by  $A_i, i \in 1, 2$ . Then  $S = S_1 + S_2$ . We say that S is the **gluing** of  $S_1$  and  $S_2$  by s if (1)  $s \in S_1 \cap S_2$  and, (2)  $G(S_1) \cap G(S_2) = s\mathbb{Z}$ .

### Theorem (-, Goel, Sengupta)

Let S be a gluing of  $S_1$  and  $S_2$ . Then S is MPD if and only if  $S_1$  and  $S_2$  are MPD. Moreover,

 $\operatorname{PF}(S) = \{ f + g + s \mid f \in \operatorname{PF}(S_1), g \in \operatorname{PF}(S_2) \}.$ 

### Unboundedness of Betti-type

- We show by a class of MPD-semigroups of embedding dimension four that there is no upper bound on the Betti-type of MPD-semigroups in terms of embedding dimension.
- Let  $a \geq 3$  be an odd natural number and  $p \in \mathbb{Z}^+$ . Define

$$S_{a,p} = \langle (a,0), (0,a^p), (a+2,2), (2,2+a^p) \rangle.$$

• Define the set

$$\Delta = \{ (a^p(a+2) - (\ell+2)a - 2, a^p(\ell+2) - 2) \mid 0 \le \ell < a^p - 1 \}.$$

### Proposition (-, Sengupta)

 $S_{a,p}$  is an MPD-semigroup and  $\Delta \subseteq PF(S_{a,p})$ .

### Theorem (-, Sengupta)

For each  $e \ge 4$ , there exists a class of MPD-semigroups of embedding dimension e in  $\mathbb{N}^2$ , where there is no upper bound on the Betti-type in terms of the embedding dimension e.

- Bhardwaj, O. P., Goel, K., and Sengupta, I.: Affine semigroups of maximal projective dimension. *Collect. Math.*, 2022.
- Bhardwaj, O. P., Sengupta, I.: Affine semigroups of maximal projective dimension-II. arXiv:2304.14806, 2023.
- Briales, E., Campillo, A., Marijuán, C., Pisón, P.: Combinatorics of syzygies for semigroup algebras. *Collect. Math.* 49(2–3), 239–256, 1998.
- Garcia-Garcia, J. I., Ojeda, I., Rosales, J. C., and Vigneron-Tenorio, A.: On pseudo-Frobenius elements of submonoids of N<sup>d</sup>. Collect. Math., 71(1):189–204, 2020.

- Garcia-Garcia, J. I., Marin-Aragon, D., and Vigneron-Tenorio, A.: An extension of Wilf's conjecture to affine semigroups. *Semigroup Forum*, 96(2), 396–408, 2018.
- Gimenez, P., Srinivasan, H.: The structure of the minimal free resolution of semigroup ring obtained by gluing. J. Pure Appl. Algebra 223(4), 1411–1426, 2019.
- Jafari, R., Yaghmaei, M.: Type and conductor of simplicial affine semigroups. J. Pure Appl. Algebra 226(3), article no. 106844 (2022)
- Rosales, J. C.: On presentations of subsemigroups of N<sup>n</sup>. Semigroup Forum, 55(2):152–159, 1997.
- Wilf, H.S.: A circle-of-lights algorithm for the "money-changing problem". Am. Math. Monthly 85(7), 562–565, 1978.

# Thank you for your attention!