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Preliminaries

By an affine semigroup S, we mean a finitely generated
(additive) submonoid of Nd for some positive integer d.

The cardinality of the minimal generating set of an affine
semigroup S is known as the embedding dimension of S,
and it is denoted by e(S).

Let S be minimally generated by a1, . . . , an ∈ Nd. The
semigroup ring k[S] = k[ta1 , . . . , tan ] of S is a k-subalgebra
of the polynomial ring k[t1, . . . , td], where tai = tai11 · · · taidd

for ai = (ai1, . . . , aid) and for all i = 1, . . . , n.

Set R = k[x1, . . . , xn] and define a map π : R → k[S] given
by π(xi) = tai for all i = 1, . . . , n. Set deg xi = ai for all
i = 1, . . . , n.
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Pseudo-Frobenius elements of submonoids of Nd

R is a multi-graded ring and that π is a degree preserving
surjective k-algebra homomorphism. Let IS = ker π. Then
IS is a homogeneous ideal, generated by binomials, called
the defining ideal of S.

Consider the cone of S in Qd
≥0,

cone(S) := {
∑n

i=1 λiai | λi ∈ Q≥0, i = 1, . . . , n}
and set H(S) := (cone(S) \ S) ∩ Nd.

Definition

An element f ∈ H(S) such that f + s ∈ S for all 0 ̸= s ∈ S, is
called pseudo- Frobenius elements of S. The set of
pseudo-Frobenius elements of S is denoted by PF(S).

PF(S) = {f ∈ H(S) | f + aj ∈ S, ∀j ∈ [1, n]}.
We call the cardinality of this set the Betti-type of S.
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Pseudo-Frobenius elements of submonoids of Nd

Remark

Pseudo-Frobenius elements may not exist. Indeed, let

S = ⟨(2, 0), (1, 1), (0, 2)⟩.

Then S is the subset of points in N2 whose sum of coordinates
is even. Thus, we have that H(S) + S = H(S). Therefore
PF(S) = ∅.

If H(S) is finite then the set of pseudo-Frobenius elements
is always non-empty.

Consider the partial order ⪯S on Nd, where for all
x, y ∈ Nd, x ⪯S y if y − x ∈ S. If H(S) is a non-empty
finite set then PF(S) = Maximals⪯SH(S).
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Pseudo-Frobenius elements of submonoids of Nd

Example

Let S = ⟨(0, 1), (3, 0), (4, 0), (5, 0), (1, 4), (2, 7)⟩.

H(S)= Set of all red points.

PF(S) = {(1, 3), (2, 6)}.
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Maximal projective dimension semigroups

S has maximal projective dimension(MPD) if
pdimR k[S] = n− 1. Equivalently, depthR k[S] = 1.

(J. I Garcia-Garcia et. al., 2020) S is MPD if and only if
PF(S) ̸= ∅.

(J. I Garcia-Garcia et. al., 2020) If S is a MPD-semigroup,
then a ∈ S is the S-degree of the (n− 2)th minimal syzygy
of k[S] if and only if a ∈ {f +

∑n
i=1 ai, f ∈ PF(S)}.

The cardinality of the set of pseudo-Frobenius elements is
equal to the last Betti number of k[S] over R.
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Maximal projective dimension semigroups

Example

Let S = ⟨a1 = (2, 11), a2 = (3, 0), a3 = (5, 9), a4 = (7, 4)⟩. Then
we have a minimal free resolution of k[S],

0 → R(−(81, 93))⊕R(−(94, 82)) → R6 → R5 → R → k[S] → 0.

Therefore, pdimR k[S] = 3. Hence, S is MPD. Thus, we have

PF(S) = {(81, 93)−
4∑

i=1

ai, (94, 82)−
4∑

i=1

ai}.

Therefore, PF(S) = {(64, 89), (77, 58)}.
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≺-symmetric semigroups

Definition

Let ≺ be a term order on Nd. Then F (S)≺ = max≺H(S), if it
exists, is called a Frobenius element of S. Note that Frobenius
elements of S may not exist. However, if |H(S)| < ∞, then S
has Frobenius elements.

Definition

Fix a term order ≺ such that F (S)≺ = max≺H(S) exists.

(1) If PF(S) = {F (S)≺}, then S is called a ≺-symmetric
semigroup.

(2) If PF(S) = {F (S)≺, F (S)≺/2}, then S is called
≺-pseudo-symmetric.
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≺-symmetric semigroups

If H(S) is a non-empty finite set, then S is said to be a
C-semigroup, where C denotes the cone of the semigroup.
When S is a C-semigroup, we give a characterization of
≺-symmetric and ≺-pseudo-symmetric semigroups.

Theorem (– , Goel, Sengupta)

Let S be a C-semigroup and let F (S)≺ denote the Frobenius
element of S with respect to an order ≺ . Then S is a
≺-symmetric semigroup if and only if for each g ∈ cone(S) ∩ Nd

we have:

g ∈ S ⇐⇒ F (S)≺ − g /∈ S.
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≺-symmetric semigroups

Theorem (– , Goel, Sengupta)

Let S be a C-semigroup and let F (S)≺ denote the Frobenius
element of S with respect to an order ≺ . Then S is a
≺-pseudo-symmetric semigroup if and only if F (S)≺ is even,
and for each g ∈ cone(S) ∩ Nd we have:

g ∈ S ⇐⇒ F (S)≺ − g /∈ S and g ̸= F (S)≺/2.
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Extended Wilf’s conjecture

Let S be a C-semigroup and ≺ be a monomial order
satisfying that every monomial is preceded only by a finite
number of monomials. Define the Frobenius number of S as

N (F (S)≺) = |H(S)|+ |{g ∈ S | g ≺ F (S)≺}|

Extended Wilf’s conjecture. (J. I. Garcia-Garcia et. al.,
2018) Let S be a C-semigroup and ≺ be a monomial order
satisfying that every monomial is preceded only by a finite
number of monomials. Then

N (F (S)≺) + 1 ≤ e(S) · |{g ∈ S | g ≺ F (S)≺}|

On cone(S), define a usual relation ≤c as follows:

g ≤c f if gi ≤ fi for all i ∈ [1, d].
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Extended Wilf’s conjecture

Theorem (– , Goel, Sengupta)

Let S be a C-semigroup with full cone. Then

(1) S is ≺-symmetric if and only if

|H(S)| = |{g ∈ S | g ≤c F (S)≺}|.

(2) S is ≺-pseudo-symmetric if and only if F (S)≺ is even and

|H(S) \ {F (S)≺/2}| = |{g ∈ S | g ≤c F (S)≺}|

Theorem (– , Goel, Sengupta)

Let S be a C-semigroup with full cone. If S is ≺-symmetric or
≺-pseudo-symmetric semigroup, then extended Wilf’s
conjecture holds.
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Extended Wilf’s conjecture

Example

S = ⟨a1 = (3, 0), a2 = (5, 0), a3 = (0, 1), a4 = (1, 3), a5 = (2, 3)⟩.
Let ≺ denote the degree lexicographic order. Then
F (S)≺ = (7, 2) and S is ≺-symmetric.

|H(S)| = 12 = |{g ∈ S | g ≤c F (S)≺}|.
e(S) = 5, N (F (S)≺) = 53.
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Gluing of MPD-semigroups

Definition

Let G(S) be the group generated by S. Let A be the minimal
generating system of S and A = A1 ∪A2 be a nontrivial
partition of A . Let Si be the submonoid of Nd generated by
Ai, i ∈ 1, 2. Then S = S1 + S2. We say that S is the gluing of
S1 and S2 by s if
(1) s ∈ S1 ∩ S2 and,
(2) G(S1) ∩G(S2) = sZ.

Theorem (– , Goel, Sengupta)

Let S be a gluing of S1 and S2. Then S is MPD if and only if
S1 and S2 are MPD. Moreover,

PF(S) = {f + g + s | f ∈ PF(S1), g ∈ PF(S2)}.
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Unboundedness of Betti-type

We show by a class of MPD-semigroups of embedding
dimension four that there is no upper bound on the
Betti-type of MPD-semigroups in terms of embedding
dimension.

Let a ≥ 3 be an odd natural number and p ∈ Z+. Define

Sa,p = ⟨(a, 0), (0, ap), (a+ 2, 2), (2, 2 + ap)⟩.

Define the set

∆ = {(ap(a+ 2)− (ℓ+ 2)a− 2, ap(ℓ+ 2)− 2) | 0 ≤ ℓ < ap − 1} .
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Unboundedness of Betti-type

Proposition (– , Sengupta)

Sa,p is an MPD-semigroup and ∆ ⊆ PF(Sa,p).

Theorem (– , Sengupta)

For each e ≥ 4, there exists a class of MPD-semigroups of
embedding dimension e in N2, where there is no upper bound
on the Betti-type in terms of the embedding dimension e.
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Thank you for your attention!
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