Image of linear derivations and Mathieu-Zhao subspaces

Sakshi Gupta

(Joint work with Divya Ahuja and Surjeet Kour)

School on Commutative Algebra and Algebraic Geometry in Prime Characteristics, ICTP, Italy

Department of Mathematics Indian Institute of Technology Delhi, India

May 5, 2023

Sakshi Gupta (IIT Delhi)

Image of linear derivations

May 5, 2023

イロト イ押ト イヨト イヨト

• <u>Notations:</u>

- K := a field of characteristic zero.
- $K^* = K \setminus \{0\}.$
- $K[X] := K[x_1, x_2, ..., x_n]$ is the polynomial algebra in *n* variables over *K*.
- A := K-algebra.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

• <u>Notations:</u>

- K := a field of characteristic zero.
- $K^* = K \setminus \{0\}.$
- $K[X] := K[x_1, x_2, ..., x_n]$ is the polynomial algebra in *n* variables over *K*.
- A := K-algebra.
- <u>*K*-Derivation</u>: A *K*-linear map $d : A \rightarrow A$ s.t.

$$egin{array}{ll} d(a+b)=d(a)+d(b),\ d(ab)=bd(a)+ad(b) &orall a,b\in A. \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

• <u>*KE*-Derivation</u>: A *K*-linear map $\delta : A \rightarrow A$ s.t.

$$egin{array}{ll} \delta({\sf a}+{\sf b}) &= \delta({\sf a})+\delta({\sf b}), \ \delta({\sf a}{\sf b}) &= b\delta({\sf a})+{\sf a}\delta({\sf b})-\delta({\sf a})\delta({\sf b}) & orall \, {\sf a}, {\sf b}\in {\sf A}. \end{array}$$

イロト イポト イヨト イヨト

э

• <u>*KE*-Derivation</u>: A *K*-linear map $\delta : A \rightarrow A$ s.t.

$$egin{array}{ll} \delta({\sf a}+{\sf b})=\delta({\sf a})+\delta({\sf b}),\ \delta({\sf a}{\sf b})={\sf b}\delta({\sf a})+{\sf a}\delta({\sf b})-\delta({\sf a})\delta({\sf b}) &orall \ {\sf a},{\sf b}\in{\sf A}. \end{array}$$

<u>Note</u>: δ is a $K\mathcal{E}$ -derivation of A if and only if $\delta = I - \phi$, for some K-endomorphism ϕ of A, where I denotes the identity automorphism of A.

イロト 人間ト イヨト イヨト

<u>Linear K-Derivation</u>: A K-derivation (or KE-derivation) d of K[X] is called linear if

$$d(x_i) = \sum_{j=1}^n a_{ij} x_j, \ i = 1, \ldots, n,$$

where $a_{ij} \in K$. The matrix $A = [a_{ij}]$ is called associated matrix of the derivation d.

イロト イポト イヨト イヨト

3

<u>Linear K-Derivation</u>: A K-derivation (or KE-derivation) d of K[X] is called linear if

$$d(x_i) = \sum_{j=1}^n a_{ij} x_j, \ i = 1, \ldots, n,$$

where $a_{ij} \in K$. The matrix $A = [a_{ij}]$ is called associated matrix of the derivation d.

If the corresponding matrix A is nilpotent, then the derivation d is called linear locally nilpotent derivation of K[X].

Sal	kshi	Gupta	(IIT	Delhi)

イロト イポト イヨト イヨト 二日

- First introduced by Zhao¹.
- By subspace of a K-algebra, we always mean a K-linear subspace.

¹Zhao, Wenhua. (2010) in 2010. Generalizations of the image conjecture and the Mathieu conjecture, Journal of Pure and Applied Algebra 214(7):=1200-1216: Second

Sakshi Gupta (IIT Delhi)

Image of linear derivations

May 5, 2023

- First introduced by Zhao¹.
- By subspace of a K-algebra, we always mean a K-linear subspace.

Mathieu-Zhao subspaces

A K-subspace \mathcal{M} of A is called a Mathieu-Zhao subspace of A if the following equivalent conditions holds:

- If $f \in A$ is such that $f^m \in \mathcal{M}$ for all $m \ge 1$, then for every $g \in A$, we have $gf^m \in \mathcal{M}$ for all large m (i.e. there exists some $m_g \in \mathbb{N}$ such that $gf^m \in \mathcal{M}$ for all $m \ge m_g$).
- ② If $f \in A$ is such that $f^m \in M$ for large *m*, then for every *g* ∈ *A*, we have $gf^m \in M$ for all large *m*.

¹Zhao, Wenhua. (2010) in 2010. Generalizations of the image conjecture and the Mathieu conjecture, Journal of Pure and Applied Algebra 214(7):=1200=1216: = https://www.nc.align.com

Sakshi Gupta (IIT Delhi)

Image of linear derivations

- Mathieu-Zhao subspace is the natural generalization of notion of ideals in a ring.
- Every ideal is a Mathieu-Zhao subspace but not all Mathieu-Zhao subspaces are ideals.

Image: A matrix and a matrix

I ≡ I

- Mathieu-Zhao subspace is the natural generalization of notion of ideals in a ring.
- Every ideal is a Mathieu-Zhao subspace but not all Mathieu-Zhao subspaces are ideals.

Example

For any $n \ge 1$ and integral domain R of characteristic zero, let $\mathcal{A} = M_{n \times n}(R)$ be the algebra of $n \times n$ matrices with entries in R and \mathcal{M} the subspace of trace-zero matrices. The subspace \mathcal{M} is a Mathieu subspace of \mathcal{A} but certainly cannot be an ideal of \mathcal{A} .

イロト イ押ト イヨト イヨト

The LFED and LNED Conjecture

Zhao proposed the following conjectures²:

The LFED Conjecture

Let d be a linear K-derivation (or $K\mathcal{E}$ -derivation) of K[X]. Then the image of the derivation d is a Mathieu-Zhao subspace of K[X].

Sakshi Gupta (IIT Delhi)

Image of linear derivations

The LFED and LNED Conjecture

Zhao proposed the following conjectures²:

The LFED Conjecture

Let d be a linear K-derivation (or $K\mathcal{E}$ -derivation) of K[X]. Then the image of the derivation d is a Mathieu-Zhao subspace of K[X].

The LNED Conjecture

Let d be a linear locally nilpotent K-derivation (or $K\mathcal{E}$ -derivation) of K[X]. Then d maps every ideal of K[X] to a Mathieu-Zhao subspace of K[X].

Sakshi Gupta (IIT Delhi)

The LFED and LNED Conjecture

Zhao proposed the following conjectures²:

The LFED Conjecture

Let d be a linear K-derivation (or $K\mathcal{E}$ -derivation) of K[X]. Then the image of the derivation d is a Mathieu-Zhao subspace of K[X].

The LNED Conjecture

Let d be a linear locally nilpotent K-derivation (or $K\mathcal{E}$ -derivation) of K[X]. Then d maps every ideal of K[X] to a Mathieu-Zhao subspace of K[X].

Sakshi Gupta (IIT Delhi)

Definition: A set $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$, where $\lambda_i \in K$ for $1 \le i \le n$ is said to be linearly independent over \mathbb{N}_0 if there exists no non-trivial linear combination over \mathbb{N}_0 that equals to zero.

イロト 不得 トイラト イラト 二日

Definition: A set $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$, where $\lambda_i \in K$ for $1 \le i \le n$ is said to be linearly independent over \mathbb{N}_0 if there exists no non-trivial linear combination over \mathbb{N}_0 that equals to zero.

Theorem (–, Ahuja, Kour)

Let d be a linear K-derivation of K[X]. If the eigenvalues of the associated matrix of d are linearly independent over \mathbb{N}_0 , then

- Imd is an ideal of K[X].
- Moreover, $Imd = (x_1, x_2, ..., x_n)$.

 Consider R = K[x₁, x₂, x₃, x₄], the polynomial algebra in four variables over K. Up to conjugation of matrices, there are five possible Jordan forms of a 4 × 4 matrix, i.e.

$$(A_1) = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{bmatrix} (A_2) = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & \lambda_3 \end{bmatrix} (A_3) = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 \\ 0 & 0 & \lambda_1 & 0 \\ 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$

$$(A_4) = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & \lambda_2 \end{bmatrix} (A_5) = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 \\ 0 & 0 & \lambda_1 & 1 \\ 0 & 0 & 0 & \lambda_1 \end{bmatrix}$$

for $\lambda_1, \lambda_2, \lambda_3$ and $\lambda_4 \in K$.

イロト 不得 トイヨト イヨト

э

• Let d be a linear K-derivation of R. Then d is conjugate to one of the following linear K-derivations of R.

$$\begin{array}{l} \bullet \quad d_1(x_1) = \lambda_1 x_1, \ d_1(x_2) = \lambda_2 x_2, \ d_1(x_3) = \lambda_3 x_3, \ d_1(x_4) = \lambda_4 x_4; \\ \bullet \quad d_2(x_1) = \lambda_1 x_1 + x_2, \ d_2(x_2) = \lambda_1 x_2, \ d_2(x_3) = \lambda_2 x_3, \ d_2(x_4) = \lambda_3 x_4; \\ \bullet \quad d_3(x_1) = \lambda_1 x_1 + x_2, \ d_3(x_2) = \lambda_1 x_2 + x_3, \ d_3(x_3) = \lambda_1 x_3, \ d_3(x_4) = \lambda_2 x_4; \\ \bullet \quad d_4(x_1) = \lambda_1 x_1 + x_2, \ d_4(x_2) = \lambda_1 x_2, \ d_4(x_3) = \lambda_2 x_3 + x_4, \ d_4(x_4) = \lambda_2 x_4; \\ \bullet \quad d_5(x_1) = \lambda_1 x_1 + x_2, \ d_5(x_2) = \lambda_1 x_2 + x_3, \ d_5(x_3) = \lambda_1 x_3 + x_4, \ d_5(x_4) = \lambda_1 x_4; \\ \text{ where } \lambda_i \in \mathcal{K} \text{ for } i = 1, 2, 3 \text{ and } 4. \end{array}$$

Sakshi Gupta (IIT Delhi)

⁴van den Essen, Arno, Wright, David, Zhao, Wenhua. (2011) *Images of locally finite* derivations of polynomial algebras in two variables. Journal of Pure and Applied Algebra 215(9): 2130-2134.

• Let d be a linear K-derivation of R. Then d is conjugate to one of the following linear K-derivations of R.

$$\begin{array}{l} \bullet \quad d_1(x_1) = \lambda_1 x_1, \ d_1(x_2) = \lambda_2 x_2, \ d_1(x_3) = \lambda_3 x_3, \ d_1(x_4) = \lambda_4 x_4; \\ \bullet \quad d_2(x_1) = \lambda_1 x_1 + x_2, \ d_2(x_2) = \lambda_1 x_2, \ d_2(x_3) = \lambda_2 x_3, \ d_2(x_4) = \lambda_3 x_4; \\ \bullet \quad d_3(x_1) = \lambda_1 x_1 + x_2, \ d_3(x_2) = \lambda_1 x_2 + x_3, \ d_3(x_3) = \lambda_1 x_3, \ d_3(x_4) = \lambda_2 x_4; \\ \bullet \quad d_4(x_1) = \lambda_1 x_1 + x_2, \ d_4(x_2) = \lambda_1 x_2, \ d_4(x_3) = \lambda_2 x_3 + x_4, \ d_4(x_4) = \lambda_2 x_4; \\ \bullet \quad d_5(x_1) = \lambda_1 x_1 + x_2, \ d_5(x_2) = \lambda_1 x_2 + x_3, \ d_5(x_3) = \lambda_1 x_3 + x_4, \ d_5(x_4) = \lambda_1 x_4; \\ \text{ where } \lambda_i \in K \text{ for } i = 1, 2, 3 \text{ and } 4. \end{array}$$

Now we study the image of $d'_i s$.

• It has been proved⁴ that Imd_1 is a Mathieu-Zhao subspace of R.

⁴van den Essen, Arno, Wright, David, Zhao, Wenhua. (2011) *Images of locally finite* derivations of polynomial algebras in two variables. Journal of Pure and Applied Algebra 215(9): 2130-2134.

Sakshi Gupta (IIT Delhi)

Theorem (–,Ahuja, Kour)

- If λ₁ ∈ K* and λ₂ = λ₃ = 0, then Imd₂ is an ideal of R generated by x₁ and x₂.
 - **2** If $\lambda_2 \in K^*$ and $\lambda_1 = \lambda_3 = 0$, then $\text{Im} d_2$ is an ideal of R generated by x_2 and x_3 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (–, Ahuja, Kour)

- If $\lambda_1 \in K^*$ and $\lambda_2 = \lambda_3 = 0$, then $\operatorname{Im} d_2$ is an ideal of R generated by x_1 and x_2 .
 - 2 If $\lambda_2 \in K^*$ and $\lambda_1 = \lambda_3 = 0$, then Imd₂ is an ideal of R generated by x_2 and x_3 .
- ۲ • If $\lambda_1 \in K^*$ and $\lambda_2 = 0$, then Imd₃ is an ideal of R generated by x_1, x_2 and x_3 .
 - 2 If $\lambda_2 \in K^*$ and $\lambda_1 = 0$, then Imd₃ is a Mathieu-Zhao subspace of R.
 - If $\lambda_1 = \lambda_2 = 0$, then Imd₃ is a Mathieu-Zhao subspace of R.

Theorem (–, Ahuja, Kour)

- If $\lambda_1 \in K^*$ and $\lambda_2 = \lambda_3 = 0$, then $\operatorname{Im} d_2$ is an ideal of R generated by x_1 and x_2 .
 - 2 If $\lambda_2 \in K^*$ and $\lambda_1 = \lambda_3 = 0$, then Imd₂ is an ideal of R generated by x_2 and x_3 .
- ٠ • If $\lambda_1 \in K^*$ and $\lambda_2 = 0$, then Imd₃ is an ideal of R generated by x_1, x_2 and x_3 .
 - 2 If $\lambda_2 \in K^*$ and $\lambda_1 = 0$, then Imd₃ is a Mathieu-Zhao subspace of R.
 - If $\lambda_1 = \lambda_2 = 0$, then Imd₃ is a Mathieu-Zhao subspace of R.
- If $\lambda_1 \in K^*$ and $\lambda_2 = 0$, then $\text{Im} d_4$ is an ideal of R generated by x_1, x_2 and x_4 .
 - 2 If $\lambda_1 = \lambda_2 = 0$, then $\text{Im} d_4$ is a Mathieu-Zhao subspace of R.

Theorem (–, Ahuja, Kour)

- If $\lambda_1 \in K^*$ and $\lambda_2 = \lambda_3 = 0$, then $\operatorname{Im} d_2$ is an ideal of R generated by x_1 and x_2 .
 - 2 If $\lambda_2 \in K^*$ and $\lambda_1 = \lambda_3 = 0$, then Imd₂ is an ideal of R generated by x_2 and x_3 .
- If $\lambda_1 \in K^*$ and $\lambda_2 = 0$, then $\text{Im} d_3$ is an ideal of R generated by x_1, x_2 and x_3 .
 - 2 If $\lambda_2 \in K^*$ and $\lambda_1 = 0$, then Imd₃ is a Mathieu-Zhao subspace of R.
 - If $\lambda_1 = \lambda_2 = 0$, then Imd₃ is a Mathieu-Zhao subspace of R.
- If $\lambda_1 \in K^*$ and $\lambda_2 = 0$, then $\text{Im} d_4$ is an ideal of R generated by x_1, x_2 and x_4 .

2 If $\lambda_1 = \lambda_2 = 0$, then $\text{Im} d_4$ is a Mathieu-Zhao subspace of R.

• If $\lambda_1 \in K^*$, then $\text{Im} d_5$ is an ideal of R generated by x_1, x_2, x_3 and x_4 .

- Outline of the proof:
 - Varying weights on R are assigned that correspond to distinct derivations on R.

Derivation	Weight
d	$(\lambda_1,\lambda_1,0,0)$
02	$(0,0,\lambda_2,0)$
	$(\lambda_1,0,0,0)$
d ₃	$(0,0,0,\lambda_2)$
	(1, 0, -1, 0)
	$(\lambda_1,\lambda_1,0,0)$
d_4	(1, 0, 0, -1)
	(0, -1, 1, 0)
d_5	$(\lambda_1,\lambda_1,\lambda_1,\lambda_1)$

⁵Liu, Dayan, Sun, Xiaosong. (2020). The factorial conjecture and images of locally nilpotent derivations. Bulletin of the Australian Mathematical Society. <u>101(1)</u>: 71<u>7</u>79.500

Sakshi Gupta (IIT Delhi)

Image of linear derivations

May 5, 2023

- Outline of the proof:
 - Varying weights on R are assigned that correspond to distinct derivations on R.

Derivation	Weight
d	$(\lambda_1,\lambda_1,0,0)$
U ₂	$(0,0,\lambda_2,0)$
	$(\lambda_1,0,0,0)$
d ₃	$(0,0,0,\lambda_2)$
	(1, 0, -1, 0)
	$(\lambda_1,\lambda_1,0,0)$
d_4	(1, 0, 0, -1)
	(0, -1, 1, 0)
d_5	$(\lambda_1,\lambda_1,\lambda_1,\lambda_1)$

• The proof utilizes the established factorial conjecture⁵ for homogeneous polynomials in two variables.

⁵Liu, Dayan, Sun, Xiaosong. (2020). The factorial conjecture and images of locally nilpotent derivations. Bulletin of the Australian Mathematical Society. <u>101(1)</u>: 71<u></u>79.940

Sakshi Gupta (IIT Delhi)

Image of linear derivations

May 5, 2023

12/19

Linear KE-derivation

• Now, we discuss the image of a linear $K\mathcal{E}$ -derivation of $R = K[x_1, x_2, x_3, x_4]$.

		· · · · · · · · · · · · · · · · · · ·	୬୯୯
Sakshi Gupta (IIT Delhi)	Image of linear derivations	May 5, 2023	13 / 19

Linear KE-derivation

- Now, we discuss the image of a linear $K\mathcal{E}$ -derivation of $R = K[x_1, x_2, x_3, x_4]$.
- Let δ be a linear $K\mathcal{E}$ -derivation. Then $\delta = I \phi$ for a linear K-endomorphism ϕ of R.

Linear $K\mathcal{E}$ -derivation

- Now, we discuss the image of a linear $K\mathcal{E}$ -derivation of $R = K[x_1, x_2, x_3, x_4]$.
- Let δ be a linear $K\mathcal{E}$ -derivation. Then $\delta = I \phi$ for a linear K-endomorphism ϕ of R.

Proposition

Let ϕ be a linear K-endomorphism of R. Then ϕ is conjugate to one of the following K-endomorphisms of R.

◎ $\phi_5(x_1) = \lambda_1 x_1 + x_2, \ \phi_5(x_2) = \lambda_1 x_2 + x_3, \ \phi_5(x_3) = \lambda_1 x_3 + x_4, \ \phi_5(x_4) = \lambda_1 x_4;$ where $\lambda_i \in K$ for i = 1, 2, 3 and 4.

Linear KE-derivation

- Let $\delta_i = I \phi_i$ for $1 \le i \le 5$.
- Then, upto conjugation, a linear $K\mathcal{E}$ -derivation of R is conjugate to δ_i for some $1 \le i \le 5$.

⁶Van den Essen, A., Sun, X. (2018). *Monomial preserving derivations and Mathieu-Zhao subspaces. J. Pure Appl. Algebra. 222(10):3219–3223.*

^{*t*}Haifeng Tian, Xiankun Du & Hongyu Jia, (2022). *Images of linear derivations and linear* \mathcal{E} -derivations of K[x, y, z], Communications in Algebra, 507, 3124-3132. $\exists \quad \neg \land \land$

Sakshi Gupta (IIT Delhi)

Image of linear derivations

May 5, 2023

Linear KE-derivation

- Let $\delta_i = I \phi_i$ for $1 \le i \le 5$.
- Then, upto conjugation, a linear $K\mathcal{E}$ -derivation of R is conjugate to δ_i for some $1 \le i \le 5$.
- \bullet Essen et.al in 2018⁶ proved that $\text{Im}\delta_1$ is a Mathieu-Zhao subspace.
- Further in 2022, Tian et.al⁷ derived the result that $\text{Im}\delta_2$ is a Mathieu-Zhao subspace.

⁶Van den Essen, A., Sun, X. (2018). Monomial preserving derivations and Mathieu-Zhao subspaces. J. Pure Appl. Algebra. 222(10):3219–3223. ⁷Haifeng Tian, Xiankun Du & Hongyu Jia, (2022). Images of linear derivations and

linear \mathcal{E} -derivations of K[x, y, z], Communications in Algebra, 507, 3124-3132.

Sakshi Gupta (IIT Delhi)

Image of linear derivations

May 5, 2023

We have established the following result on δ_i 's.

Theorem (–,Ahuja, Kour)

• If $\lambda_1^p \lambda_2^q \neq 1$ for all $p, q \in \mathbb{N}$, then $\text{Im}\delta_3$ is a Mathieu-Zhao subspace of R.

2 If there exists $p, q \in \mathbb{N}$ such that $\lambda_1^p = 1$ and $\lambda_2^q = 1$, then $\text{Im}\delta_3$ is a Mathieu-Zhao subspace of R.

3

イロト イポト イヨト イヨト

We have established the following result on δ_i 's.

Theorem (–,Ahuja, Kour)

- If $\lambda_1^p \lambda_2^q \neq 1$ for all $p, q \in \mathbb{N}$, then $\text{Im}\delta_3$ is a Mathieu-Zhao subspace of R.
 - ② If there exists $p, q \in \mathbb{N}$ such that $\lambda_1^p = 1$ and $\lambda_2^q = 1$, then Im δ_3 is a Mathieu-Zhao subspace of *R*.
- If $\lambda_1^p \lambda_2^q \neq 1$ for all $p, q \in \mathbb{N}$, then $\text{Im}\delta_4$ is a Mathieu-Zhao subspace of R.
 - 2 If there exists $p, q \in \mathbb{N}$ such that $\lambda_1^p = 1$ and $\lambda_2^q = 1$, then $\text{Im}\delta_4$ is a Mathieu-Zhao subspace of R.

イロト 不得下 イヨト イヨト 二日

We have established the following result on δ_i 's.

Theorem (–,Ahuja, Kour)

- If $\lambda_1^p \lambda_2^q \neq 1$ for all $p, q \in \mathbb{N}$, then $\text{Im}\delta_3$ is a Mathieu-Zhao subspace of R.
 - 2 If there exists $p, q \in \mathbb{N}$ such that $\lambda_1^p = 1$ and $\lambda_2^q = 1$, then $\text{Im}\delta_3$ is a Mathieu-Zhao subspace of R.
- 1 If $\lambda_1^p \lambda_2^q \neq 1$ for all $p, q \in \mathbb{N}$, then $\text{Im}\delta_4$ is a Mathieu-Zhao subspace of R.
 - ② If there exists $p, q \in \mathbb{N}$ such that $\lambda_1^p = 1$ and $\lambda_2^q = 1$, then Im δ_4 is a Mathieu-Zhao subspace of *R*.

• If $\lambda_1^p \neq 1$ for all $p \in \mathbb{N}$, then $\text{Im}\delta_5$ is a Mathieu-Zhao subspace of R.

C - I I			T D (11.1)
Saksr	מווה) וו	та нн	l Deini
	n oup		

イロト 不得 トイラト イラト 二字 -

- Outline of the proof:
 - Introduced new *K*-algebra endomorphisms corresponding to the given derivations.

Automorphism	New Matrix					
	$[\phi_{\lambda_1,\lambda_2}] =$	λ_1	λ_1	$-\frac{\lambda_1}{2}$	0]	
<i>d</i> ₂		0	λ_1	$-\overline{\lambda_1}$	0	
ψ_3		0	0	λ_1	0	
		0	0	0	λ_2	
	$[\phi_{\lambda_1,\lambda_2}] =$	λ_1	λ_1	0	0]	
4		0	λ_1	0	0	
$arphi_4$		0	0	λ_2	$-\lambda_2$	
		0	0	0	λ_2	

イロト イボト イヨト イヨト

э

- Outline of the proof:
 - Introduced new *K*-algebra endomorphisms corresponding to the given derivations.

Automorphism	New Matrix					
	$[\phi_{\lambda_1,\lambda_2}] =$	λ_1	λ_1	$-\frac{\lambda_1}{2}$	0	1
<i>d</i> ₂		0	λ_1	$-\overline{\lambda_1}$	0	
ψ_3		0	0	λ_1	0	
		0	0	0	λ_2	
	$[\phi_{\lambda_1,\lambda_2}] =$	λ_1	λ_1	0	0 -]
4		0	λ_1	0	0	
ψ_4		0	0	λ_2	$-\lambda_2$	
		0	0	0	λ_2	

• Used the same weights as defined for d_i 's to complete the proof.

イロト 不得下 イヨト イヨト

Э

Bibliography I

- Liu, Dayan, Sun, Xiaosong. (2020). The factorial conjecture and images of locally nilpotent derivations. Bulletin of the Australian Mathematical Society. 101(1): 71-79.
- [2] Tian, Haifeng, Du, Xiankun, Jia, Hongyu. (2022). Images of linear derivations and linear \mathcal{E} -derivations of K[x, y, z]. Communications in Algebra. 50(7): 3124-3132.
- [3] van den Essen, Arno, Sun, Xiaosong. (2018). Monomial preserving derivations and Mathieu–Zhao subspaces. Journal of Pure and Applied Algebra 222(10): 3219-3223.
- [4] van den Essen, Arno, Wright, David, Zhao, Wenhua. (2011) Images of locally finite derivations of polynomial algebras in two variables. Journal of Pure and Applied Algebra 215(9): 2130-2134.
- [5] Zhao, Wenhua. (2010). Generalizations of the image conjecture and the Mathieu conjecture. Journal of Pure and Applied Algebra 214(7): 1200-1216.

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Bibliography II

[6] Zhao, Wenhua. (2018). Some open problems on locally finite or locally nilpotent derivations and *E*-derivations. Communications in Contemporary Mathematics 20(04): 1750056.

イロト イポト イヨト イヨト

э

Sakshi Gupta (IIT Delhi)