Upper bounds on two Hilbert coefficients

Le Xuan Dung Hong Duc University, Vietnam

(Joint work with J. Elias and L. T. Hoa) ICTP, Trieste, Italy, 5/2023

 Ω

4 0 8

 \overline{AB}

∍

- **•** Motivation
- **•** Main results

重

 299

 $A \cup B$ $A \cup B$ B $A \cup B$ $B \cup A \cup B$ B

- (A, m) : Noetherian local ring, $I \subset A$: m-primary.
- M: finitely generated A-module with dim $M = d$.

医毛囊 医牙骨

K ロ ▶ K 何 ▶

 299

э

- (A, m) : Noetherian local ring, $I \subset A$: m-primary.
- \bullet M: finitely generated A-module with dim $M = d$.
- $H^1_{I,M}(n) := \ell_A(M/I^{n+1}M)$: the Hilbert-Samuel function of M w.r.t I.

∍

 Ω

- (A, m) : Noetherian local ring, $I \subset A$: m-primary.
- \bullet M: finitely generated A-module with dim $M = d$.
- $H^1_{I,M}(n) := \ell_A(M/I^{n+1}M)$: the Hilbert-Samuel function of M w.r.t I.
- $H^1_{I,M}(n) = P^1_{I,M}(n)$ for $n \gg 0$: the Hilbert-Samuel polynomial

$$
P_{I,M}^1(n) = e_0(I,M)\binom{n+d}{d} - e_1(I,M)\binom{n+d-1}{d-1} + \cdots + (-1)^d e_d(I,M),
$$

 Ω

- \bullet (A, m): Noetherian local ring, $I \subset A$: m-primary.
- \bullet M: finitely generated A-module with dim $M = d$.
- $H^1_{I,M}(n) := \ell_A(M/I^{n+1}M)$: the Hilbert-Samuel function of M w.r.t I.
- $H^1_{I,M}(n) = P^1_{I,M}(n)$ for $n \gg 0$: the Hilbert-Samuel polynomial

$$
P_{I,M}^1(n) = e_0(I,M) {n+d \choose d} - e_1(I,M) {n+d-1 \choose d-1} + \cdots + (-1)^d e_d(I,M),
$$

then the integers

$$
e_0(I, M), ..., , e_d(I, M)
$$
 (1)

are called the Hilbert coefficients of M with respect to I.

 Ω

イロメ イ押メ イモメ イモメ

Rossi-Valla (2010): There is another way to define the Hilbert coefficients $e_i(I, M)$.

É

 299

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

- Rossi-Valla (2010): There is another way to define the Hilbert coefficients $e_i(I, M)$.
- $H_{I,M}(n) := H_{G_I(M)}(n) = \ell_A(I^nM/I^{n+1}M)$: Hilbert function of M w. r. t I.
- $HP_{I,M}(z) := \sum_{n\geq 0} H_{I,M}(n)z^n$: the Hilbert series of M w. r. t I.

イロト イ押 トイヨ トイヨト

 Ω

- Rossi-Valla (2010): There is another way to define the Hilbert coefficients $e_i(I, M)$.
- $H_{I,M}(n) := H_{G_I(M)}(n) = \ell_A(I^nM/I^{n+1}M)$: Hilbert function of M w. r. t I.
- $HP_{I,M}(z) := \sum_{n\geq 0} H_{I,M}(n)z^n$: the Hilbert series of M w. r. t I.
- $HP_{I,M}(z)=\frac{Q_{I,M}(z)}{(1-z)^d},$ where $Q_{I,M}(z)\in \mathbb{Z}[z]$ such that $Q_{I,M}(1)\neq 0.$

 Ω

Rossi-Valla (2010): There is another way to define the Hilbert coefficients $e_i(I, M)$.

•
$$
H_{l,M}(n) := H_{G_l(M)}(n) = \ell_A(l^n M / l^{n+1} M)
$$
: Hilbert function of M w. r. t *l*.

•
$$
HP_{I,M}(z) := \sum_{n\geq 0} H_{I,M}(n)z^n
$$
: the Hilbert series of *M* w. r. t *I*.

\n- \n
$$
HP_{I,M}(z) = \frac{Q_{I,M}(z)}{(1-z)^d}
$$
, where $Q_{I,M}(z) \in \mathbb{Z}[z]$ such that $Q_{I,M}(1) \neq 0$.\n
\n- \n
$$
Q^{(i)}(1)
$$
\n
\n

$$
e_i(I, M) = \frac{Q_{I, M}^{(1)}(1)}{i!}
$$
 (2),

for all $i\geq 0$, where where $Q_{I,M}^{(i)}$ denotes the i -th derivation of $Q_{I,M}$

目

 209

 \leftarrow \leftarrow

• Rossi-Valla (2010): There is another way to define the Hilbert coefficients $e_i(I, M)$.

 $H_{I,M}(n) := H_{G_I(M)}(n) = \ell_A(I^nM/I^{n+1}M)$: Hilbert function of M w. r. t I.

- $HP_{I,M}(z) := \sum_{n\geq 0} H_{I,M}(n)z^n$: the Hilbert series of M w. r. t I.
- $HP_{I,M}(z)=\frac{Q_{I,M}(z)}{(1-z)^d},$ where $Q_{I,M}(z)\in \mathbb{Z}[z]$ such that $Q_{I,M}(1)\neq 0.$ \bullet

$$
e_i(I, M) = \frac{Q_{I,M}^{(i)}(1)}{i!} \qquad (2),
$$

for all $i\geq 0$, where where $Q_{I,M}^{(i)}$ denotes the i -th derivation of $Q_{I,M}$

- ▶ 0 $\leq i \leq d$, this value of $e_i(I, M)$ agrees with the one defined in (1).
- ightharpoonup is using (2) we can talk about the Hilbert coefficients $e_i(I, M)$ with $i > d$.
- M: Cohen-Macaulay modules

 Ω

重

 299

メロメ メ御 メメ ヨメ メヨメ

1. Rossi-Valla (2010), Elias (2005).

目

メロトメ 倒 トメ ミトメ ミト

 299

- 1. Rossi-Valla (2010), Elias (2005).
	- Northcott (1960), Narita (1963): $e_1(I, M) \ge 0$, $e_2(I, M) \ge 0$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 299

э

- 1. Rossi-Valla (2010), Elias (2005).
	- Northcott (1960), Narita (1963): $e_1(I, M) \geq 0$, $e_2(I, M) \geq 0$.
	- Kirby-Mehran (1982): $e_1(l,M) \leq \binom{e_0(l,M)}{2}$ and $e_2(l,M) \leq \binom{e_1(l,M)}{2}$.

э

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

- 1. Rossi-Valla (2010), Elias (2005).
	- Northcott (1960), Narita (1963): $e_1(I, M) > 0$, $e_2(I, M) > 0$.
	- Kirby-Mehran (1982): $e_1(l,M) \leq \binom{e_0(l,M)}{2}$ and $e_2(l,M) \leq \binom{e_1(l,M)}{2}$.
	- Rossi-Valla (2010): Let b be a positive integer such that $IM \subseteq m^bM$

$$
e_1(I,M)\leq \binom{e_0(I,M)-b+1}{2}
$$

If $d = 1$ and $e_0(I, M) \neq e_0(m^b, M)$

$$
e_1(I,M)\leq {e_0(I,M)-b\choose 2}
$$

 Ω

- 2. Rossi-Valla (2005), Elias (2008).
	- Rossi-Valla (2005) $e_1(l) \leq {e_0(l) \choose 2} {\mu(l) d \choose 2} \ell(A/l) + 1$, where $\mu(l)$ denotes the number of generators of I.

э

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

- 2. Rossi-Valla (2005), Elias (2008).
	- Rossi-Valla (2005) $e_1(l) \leq {e_0(l) \choose 2} {\mu(l) d \choose 2} \ell(A/l) + 1$, where $\mu(l)$ denotes the number of generators of I.
	- Elias (2008) Let $I \subseteq \mathfrak{m}^b$ be an m-primary ideal of an one-dimensional Cohen-Macaulay ring A. Then

$$
e_1(I) \leq (e_0(\mathfrak{m})-1)(e_0(I)-be_0(\mathfrak{m}))+e_1(\mathfrak{m}).
$$

 Ω

イロト イ押ト イヨト イヨト

Problem 1

- Find better bounds than those obtained by Rossi-Valla (2010), Elias (2005), and give some conditions for achieving equality.
- Find better bounds than those obtained by Elias (2008) for any dimension d.

4 0 8

 299

重

 299

メロメ メ御 メメ ヨメ メヨメ

Kirby-Mehran (1982): $e_1(l,M) \leq \binom{e_0(l,M)}{2}$ and $e_2(l,M) \leq \binom{e_1(l,M)}{2}$, we get $e_2(I, M) < \frac{1}{8}e_0(I, M)^4$.

э

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 QQ

- Kirby-Mehran (1982): $e_1(l,M) \leq \binom{e_0(l,M)}{2}$ and $e_2(l,M) \leq \binom{e_1(l,M)}{2}$, we get $e_2(I, M) < \frac{1}{8}e_0(I, M)^4$.
- J. Elias, M.E. Rossi and G. Valla (1996). In the case $I = m$ and $M = A$, We can show that $e_2(m) < \frac{2}{3}e_0(m)^3$.

 Ω

イロト イ押ト イヨト イヨト

- Kirby-Mehran (1982): $e_1(l,M) \leq \binom{e_0(l,M)}{2}$ and $e_2(l,M) \leq \binom{e_1(l,M)}{2}$, we get $e_2(I, M) < \frac{1}{8}e_0(I, M)^4$.
- J. Elias, M.E. Rossi and G. Valla (1996). In the case $I = m$ and $M = A$, We can show that $e_2(m) < \frac{2}{3}e_0(m)^3$.

Problem 2

Find better bounds on $e_2(I, M)$ and give some conditions for achieving equality.

 Ω

Main results

 $R=\oplus_{i\geq 0}R_i$: Noetherian standard graded ring over a local Artinian ring (R_0,\mathfrak{m}_0) , $R_+ = \oplus_{i>0} R_i.$

Definition

Let E be a finitely generated graded R -module. We set

$$
a_i(E) = \begin{cases} \max\{n | H_{R_+}^i(E)_n \neq 0 \} & \text{if } H_{R_+}^i(E) \neq 0, \\ -\infty & \text{if } H_{R_+}^i(E) = 0, \end{cases}
$$

The Castelnuovo-Mumford regularity of E.

 $reg(E) := max\{a_i(E) + i | i \ge 0\}.$

イロト イ押ト イヨト イヨト

 QQ

 \bullet The associated graded module of M with respect to I is defined by

$$
G_I(M)=\bigoplus_{n\geq 0}I_nM/I_{n+1}M.
$$

• We use the following notations

 $pn(I, M) := pn(G_I(M)) = min\{n|P_{I,M}(t) = H_{I,M}(t)$ for all $t \ge n\}$,

 Ω

K ロ ▶ K 何 ▶

The first upper bounds on $e_1(I, M)$)

Proposition 1

Let M be a Cohen-Macaulay module and of dimension $d \geq 1$. Let b be a positive integer such that $IM \subset \mathfrak{m}^b M$. Then

$$
e_1(I, M) \le {e_0(I, M) - b + 1 \choose 2} + b - \ell(M/IM). \tag{1}
$$

If $d = 1$ and the equality in [\(1\)](#page-25-0) holds, then we have

(i) $a_0(G_1(M)) \leq 0$, (ii) Either reg($G_I(M)$) = pn(I, M) = $e_0(I, M) - b$ or $e_0(I, M) \in \{b, b+1\}$, (iii) $H_{I,M}(n) = b + n$ for all $1 \le n \le pn(I,M) - 1$.

 Ω

Proposition 2

If $d=1$ and $e_0(I,M)>e_0(\mathfrak{m}^b,M)$, then

$$
e_1(I, M) \le {e_0(I, M) - b \choose 2} + b + 1 - \ell(M/IM). \tag{2}
$$

If the equality in (2) holds, then we have

(i')
$$
a_0(G_l(M)) \le 0
$$
,
\n(ii') Either reg $(G_l(M)) = pn(l, M) = e_0(l, M) - b - 1$ or
\n $e_0(l, M) \in \{b+1, b+2\}$,
\n(iii') $H_{l,M}(n) = n + b + 1$ for all $1 \le n \le pn(l, M) - 1$.

 299

目

メロメ メ御 メメ ヨメ メヨメ

Proposition 3

Let M be an one-dimensional Cohen-Macaulay A-module and I an m-primary ideal. Let b be the largest positive integer such that $IM \subset \mathfrak{m}^b M$. Assume that $e_0(I, M) > b + 2$. Then the following conditions are equivalent:

(i)
$$
e_1(I, M) = {e_0(I, M) - b + 1 \choose 2} + b - \ell(M/IM),
$$

\n(ii) $HP_{I,M}(z) = \frac{\ell(M/IM) + (b + 1 - \ell(M/IM))z + \sum_{i=2}^{e_0(I, M) - b} z^i}{1 - z},$
\n(iii) $a_0(G_I(M)) \le 0$ and $reg(G_I(M)) = e_0(I, M) - b,$
\n(iv) $reg(G_I(M)) = {e_0(I, M) - b + 2 \choose 2} + b - e_1(I, M) - \ell(M/IM) - 1.$
\nIf one of the above conditions is satisfied, then $b = 1$ and $e_0(I, M) = e_0(m, M)$.

 Ω

イロメ イ押メ イモメイモ

Proposition 4

Let M be an one-dimensional Cohen-Macaulay A-module and I an m-primary ideal such that $I\subseteq \mathfrak{m}^b$, $e_0(I,M)>e_0(\mathfrak{m}^b,M)$ and $e_0(I,M)\geq b+3$, where b is a positive integer. Then the following conditions are equivalent: $\int_{0}^{e_0(I,M)-b}$

(i)
$$
e_1 = {e_0(t, M) - b) + b + 1 - \ell(M/M),
$$

\n(ii) $HP_{1,M}(z) = \frac{\ell(M/M) + (b+2 - \ell(M/M))z + \sum_{i=2}^{e_0(I,M) - b - 1} z^i}{1 - z},$
\n(iii) $a_0(G_I(M)) \le 0$ and $reg(G_I(M)) = e_0(I, M) - b - 1,$
\n(iv) $reg(G_I(M)) = {e_0(t, M) - b + 1 \choose 2} + b - e_1(I, M) - \ell(M/IM).$

 Ω

The second upper bounds on $e_1(I, M)$)

Elias (2008) Let $I \subseteq \mathfrak{m}^b$ be an m-primary ideal of an one-dimensional Cohen-Macaulay ring A. Then

$$
e_1(I) \leq (e_0(\mathfrak{m})-1)(e_0(I)-be_0(\mathfrak{m}))+e_1(\mathfrak{m}).
$$

Modifying the bound in the above result, we can give a new bound on $e_1(I)$ for any dimension.

 Ω

K ロ ▶ K 何 ▶ K

The second upper bounds on $e_1(I, M)$)

Elias (2008) Let $I \subseteq \mathfrak{m}^b$ be an m-primary ideal of an one-dimensional Cohen-Macaulay ring A. Then

$$
e_1(I) \leq (e_0(\mathfrak{m})-1)(e_0(I)-b e_0(\mathfrak{m}))+e_1(\mathfrak{m}).
$$

Modifying the bound in the above result, we can give a new bound on $e_1(I)$ for any dimension.

Theorem 5

Let A be a Cohen-Macaulay ring of dimension $d \geq 1$. Let $I \subseteq \mathfrak{m}^b$ be an m-primary ideal, where $b \geq 1$. Then

$$
e_1(I)\leq \frac{1}{2b-1}\binom{e_0(I)-b+1}{2}-\binom{\mu(m)-d}{2}.
$$

 Ω

Problem 2: (Upper bounds on $e_2(I, M)$)

Theorem 6

Let M be a Cohen-Macaulay module of dim $(M) = d \geq 2$ over (A, \mathfrak{m}) . Let I be an m-primary ideal such that $IM \subseteq m^bM$, where b is a positive integer. Then

$$
e_2(I,M)\leq {e_0(I,M)-b+1\choose 3}(<{1\over 6}e_0(I,M)^3).
$$

By results of Kirby-Mehran (1982) we can show that $e_2(I, M) < \frac{1}{8}e_0(I, M)^4$.

 Ω

Problem 2: (Upper bounds on $e_2(I, M)$)

Theorem 6

Let M be a Cohen-Macaulay module of dim(M) = $d \geq 2$ over (A, m). Let I be an m-primary ideal such that $IM \subseteq m^bM$, where b is a positive integer. Then

$$
e_2(I,M)\leq {e_0(I,M)-b+1\choose 3}(<{1\over 6}e_0(I,M)^3).
$$

- By results of Kirby-Mehran (1982) we can show that $e_2(I, M) < \frac{1}{8}e_0(I, M)^4$.
- \bullet By results of J. Elias, M.E. Rossi and G. Valla (1996), in the case $I = \mathfrak{m}$ and $M = A$, we can show that $e_2(m) < \frac{2}{3}e_0(m)^3$.

 Ω

Theorem 7

Let M be a Cohen-Macaulay module of dim(M) = $d \ge 2$ over (A, m) and I an m-primary ideal. Let b be the largest integer such that $IM \subset \mathfrak{m}^b M$. Assume that $e_0(I, M) > b + 2$. The following conditions are equivalent:

(i) $e_2(I, M) = {e_0(I, M) - b + 1 \choose 3},$ (ii) $HP_{I,M}(z) = \frac{\ell(M/IM)+(1+b-\ell(M/IM))z+\sum_{i=2}^{e_0(I,M)-b}z^{i}}{(1-z)^d}$ $\frac{((W/NN))2+\sum_{i=2}^{N}2}{(1-z)^d},$ (iii) depth($G_I(M)$) ≥ d − 1 and $e_1(I, M) = {e_0(I, M) - b + 1 \choose 2} + b - l(M/IM)$, (iv) depth $(G_1(M)) \ge d - 1$, reg $(G_1(M)) = e_0(I) - b$ and $a_{d-1}(G_1(M)) \le 1 - d$, (v) depth($G_I(M)$) > d – 1 and ${\rm reg}(G_l(M)) = \binom{{\rm e}_0(l,M)-b+2}{2} + b - {\rm e}_1(l,M) - \ell(M/IM) - 1.$ If one of the above conditions holds, then $b = 1$.

 Ω

 $\mathbf{A} \sqsubseteq \mathbf{A} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B}$

$M = A$: Cohen-Macaulay rings

For the case $M = A$, using the bound of Theorem 5, we can give a better bound in the case $b \ge 2$. We need some more preparation.

Definition

- The ideal $J \subseteq I$ is called an *M-reduction* of *I* if $I^{n+1}M = JI^nM$ for all $n \gg 0$.
- The number:

$$
r_J(1,M) = \min\{n \geq 0 | I^{n+1}M = JI^nM\}
$$

is called the M-reduction number of I with respect to J.

- An M-reduction of I is called minimal if it does not strictly contain another M-reduction of I.
- The number

$$
r(I, M) := \min\{r_J(I, M)| \mid J \text{ is a minimal } M\text{-reduction of } I\}
$$

is called the M-reduction number of I.

 Ω

イロト イ押ト イヨト イヨト

Some relationships between the reduction number and Hilbert coefficients:

Lemma 8

Let M be an one-dimensional Cohen-Macaulay module and I an m-primary ideal such that $IM \subseteq \mathfrak{m}^bM$ for some positive integer b. Then

 $r(I, M) \le e_0(I, M) - b.$

Lemma 9

Let M be an one-dimensional Cohen-Macaulay module and I an m-primary ideal. Then

$$
e_2(I,M) \le (r'(I,M) - 1)e_1(I,M),
$$

where we set $r'(I, M) := \max\{1, r(I, M)\}.$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Using the above two lemmas, we can give a new bound on $e_2(I, M)$.

Lemma 10

Let M be a Cohen-Macaulay module of dimension $d > 2$ and I an m-primary ideal such that $IM \subseteq \mathfrak{m}^bM$ for some positive integer b. Assume that $e_0(1, M) \geq b + 1$. Then

$$
e_2(I, M) \leq (e_0(I, M) - b - 1)e_1(I, M).
$$

 Ω

Theorem 5

Let A be a Cohen-Macaulay ring of dimension $d \geq 1$. Let $I \subseteq \mathfrak{m}^b$ be an \mathfrak{m} -primary ideal, where $b \geq 1$. Then

$$
e_1(I)\leq \frac{1}{2b-1}\binom{e_0(I)-b+1}{2}-\binom{\mu(m)-d}{2}.
$$

Combining the above result with Theorem 5 we can give a better bound in the case $b > 2$.

Theorem 11

Let I be an m-primary ideal of a Cohen-Macaulay ring (A, \mathfrak{m}) of dimension $d \geq 2$ and such that $I\subseteq \mathfrak{m}^b$ for some positive integer $b.$ Assume that $e_0(I,M)\geq b+1.$ Then

$$
e_2(I) \leq \frac{3}{2b-1}\binom{e_0(I)-b+1}{3} - (e_0(I)-b-1)\binom{\mu(\mathfrak{m})-d}{2}.
$$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

THANK TO YOUR ATTENTION!

重

 299

メロメメ 倒 メメ ミメメ ミメ

 2990

メロトメ 御 トメ 君 トメ 君 トー 君