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Structural properties of local integrals of motion across the many-body
localization transition via a fast and efficient method for their construction
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Many-body localization (MBL) is a novel prototype of ergodicity breaking due to the emergence of local
integrals of motion (LIOMs) in a disordered interacting quantum system. To better understand the role played by
the existence of such LIOMs, we explore and study some of their structural properties across the MBL transition.
We first consider a one-dimensional XXZ spin chain in a disordered magnetic field and introduce and implement
a nonperturbative, fast, and accurate method of constructing LIOMs. In contrast to already existing methods,
our scheme allows obtaining LIOMs not only in the deep MBL phase but, rather, near the transition point too.
Then, we take the matrix representation of LIOM operators as an adjacency matrix of a directed graph whose
elements describe the connectivity of ordered eigenbasis in the Hilbert space. Our cluster-size analysis for this
graph shows that the MBL transition coincides with a percolation transition in the Hilbert space. By performing
finite-size scaling, we compare the critical disorder and correlation exponent ν both in the presence and absence
of interactions. Finally, we also discuss how the distribution of diagonal elements of LIOM operators in a typical
cluster signals the transition.

DOI: 10.1103/PhysRevB.106.054202

I. INTRODUCTION

Currently, there is great scientific interest to gain deeper in-
sight into the localization phenomena in many-body quantum
systems. By now, it has been found that, in one dimension,
an isolated interacting system of fermions that is subject to
quenched disorder can undergo a phase transition from a
thermal regime where transport is diffusive or subdiffusive
[1–6] to the many-body localization (MBL) phase where the
transport coefficients are exponentially small in the system
size [7–10] and memory of the initial state is retained to
arbitrarily long times [11].

It is thought that the MBL phase of such systems can
be described in terms of emergent local integrals of motion
(LIOMs) which form a complete set of quasilocal conserved
quantities [12–14]. In the absence of interaction, such a sys-
tem exhibits Anderson localization [15] for an arbitrarily
small amount of disorder. The corresponding single-particle
wave functions are exponentially localized in real space over a
characteristic length scale which is called localization length.
In this case, a complete set of LIOMs can be identified by
the occupancies of these single-particle orbitals [12]. Upon
turning the interaction on, multiparticle resonances start to
proliferate and, hence, stronger disorder is needed to keep
the system localized [7]. However, if the disorder strength
is sufficiently larger than the interaction strength, the system
remains in the MBL phase and LIOMs can be understood as
weakly dressed single-particle orbitals [12,16].

In general, the number of ways in which a set of LIOMs
can be arranged is very large and, therefore, the calculation
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of all LIOMs is a complicated task practically. It was first
pointed out that a complete set of LIOMs for a finite-size
system can be obtained via labeling the eigenstates of the
system by their corresponding LIOM eigenvalues uniquely
[13,14]. Then, it was suggested to construct LIOMs (which
do not form a complete basis) by computing an infinite-time
average of initially local operators [17,18]. In this regard,
various approaches like using Monte Carlo stochastic method
[19], exact diagonalization techniques [20–23], and tensor
networks [24–27] have been developed.

Although the above-mentioned construction algorithms for
LIOMs have made great progress, developing and implement-
ing a simple method that allows constructing a complete set of
LIOMs with the following properties simultaneously is of ma-
jor interest. A method that (i) is nonperturbative and provides
quasilocal LIOMs that commute strictly with the Hamiltonian,
(ii) not essentially requires strong disorder intensity, and (iii)
costs much less computationally but yet has enough accuracy.
In particular, the second property makes it possible to move
away from the deep MBL phase toward the transition point
and study some aspects of the phase transition using LIOMs.
This is an interesting issue because even in the ergodic phase it
is possible to define integrals of motion that are not local quan-
tities. By increasing the strength of the disorder, one arrives
in the MBL phase in which the system fails to thermalize and
constants of motion are localized. Therefore, it is the structural
properties of the LIOMs that directly affect the thermalization
of the system [28]. So, it is always interesting to characterize
the MBL transition via the properties of the LIOMs across the
transition. Thus, the main objective of the following paper is
twofold. First, we present an efficient scheme for computing
a complete set of LIOMs in a nonperturbative manner and,
second, capture certain aspects of the MBL transition by
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considering the resulting LIOM operators as an adjacency
matrix of a graph that represents the connectivity of the eigen-
basis in the Hilbert-space and undergoes a percolationlike
transition.

In this paper, we describe and develop a fast method to
construct a complete set of LIOMs explicitly for the random-
field XXZ spin chain that can be used to study some structural
properties of LIOMs near the MBL to ergodic transition. We
perform our algorithm via arranging an optimized set of the
eigenstates of the system in a quasilocal unitary operator
which maps the physical spin operators onto effective spins
operators. Such an ordered set of the eigenbasis can be ob-
tained by assigning an integer index number to each eigenstate
which determines its order in our desired set. We recognize
this index number by locating the original basis vector of the
Hilbert space on which that eigenstate has the largest absolute
amplitude among all the eigenstates of the system. Then, in
the next step, we consider the resulting LIOM operator as
an adjacency matrix of a network whose elements indicate
the connectivity of the eigenbasis in the Hilbert space. We
illustrate that this network undergoes a percolationlike tran-
sition on crossing the transition from MBL into the ergodic
phase. The percolation transition can be understood within
the Hilbert-space cluster size analysis of the fragmentation of
the network associated with LIOMs. Such a classical percola-
tion analogy for the MBL transition was previously observed
either by considering the Hamiltonian as a tight-binding
model in Fock space [29,30] or by retaining only resonant
contributions and mapping the quantum problem to rate equa-
tions [31]. However, in this paper, we underline the impor-
tance of such a transition in a network associated with LIOMs
which is a key concept in MBL transition. We further provide
an analysis of how local observables on the clusters of this net-
work can quantitatively capture the ergodic to MBL transition.

The rest of the paper is organized as follows. In Sec. II,
we describe our spin-1/2 model employed and introduce our
algorithm to construct LIOM operators. Section III contains
numerical results obtained by the implementation of our al-
gorithm. We first represent the results concerning the locality
of obtained LIOM operators. We then use the LIOM opera-
tors and show that the ergodic to MBL transition coincides
with a percolation transition in a graph of eigenvectors in
the Hilbert space whose structure is described by the matrix
representation of LIOMs. To illustrate how the transition takes
place, we perform cluster size analysis and apply finite-size
scaling to compare the percolation threshold and correlation
exponent ν in the presence and absence of interaction. We
further discuss how the distribution of local magnetization
of clusters may signals the transition and, finally, concluding
remarks are given in Sec. IV.

II. MODEL AND APPROACH

A. Model Hamiltonian

We consider a standard model of MBL which is a spin-1/2
chain of length L in a random magnetic field in the z direction
and can be written as

H =
L−1∑
i=1

J

(
σ+

i σ−
i+1 + σ−

i σ+
i+1 + 1

2
�σ z

i σ z
i

)
+ hiσ

z
i , (1)

where σ±
i = σ x

i ± iσ y
i are the raising and lowering spin-1/2

operators and σ
x,y,z
i denote the Pauli operators acting on spin

i. Here, we use open boundary conditions and fix the exchange
interaction coupling at J = 1. The values hi are, also, drawn
independently from a random uniform distribution [−W,W ]
and the parameter � determines the anisotropy of the model.
This model is known to undergo a phase transition at a critical
disorder strength W = Wc = 3.5 ± 0.5 from an ergodic phase
to an MBL phase which depends on energy density [32,33]. In
the current paper, we focus on the MBL side of the transition,
W > Wc, in which the existence of LIOMs prevents thermal-
ization. Using the Jordan-Wigner transformation [34], this
model can be mapped to a model of spinless fermions and we
are interested in two different cases when � = 0 and � = 1,
which corresponds to the noninteracting Anderson model and
an interacting and disordered fermionic model, respectively.

B. Approach

To begin, let us review the basic idea behind the LIOM
scheme. We first consider a noninteracting system in which
� = 0. Upon diagonalization of the Hamiltonian in Eq. (1),
one obtains a set of energy eigenvalues that uniquely identifies
the system’s eigenstates. In this system, which is equiv-
alent to a single-particle Anderson model, eigenstates are
exponentially localized around some localization center and
their occupation numbers are mutually commuting, conserved
quantities, and hence can form a complete set of LIOMs.
These are the number operators,

nα =
∑

i j

ψ∗
α (i)ψα ( j)c†

i c j, (2)

in terms of which the Hamiltonian can be rewritten as

H =
∑

α

2εαnα −
∑

α

εα, (3)

where the last term on the right-hand side is the vacuum
constant energy shift. It is now straightforward to define the
corresponding LIOM operators in terms of the original spin
operators via the Jordan-Wigner string operator as

τ z
α = 2

∑
i j

ψ∗
α (i)ψα ( j)σ+

i

⎛⎝ max(i, j)∏
k=min(i, j)

σ z
k

⎞⎠σ−
j − 1, (4)

which allows us to write the Hamiltonian as

H =
∑

α

εατ z
α. (5)

Given the locality of the τα , one could as well associate an
index i of the lattice to each index α, for example, considering
the maximum of |ψα (i)|2.

In the presence of interactions, however, the basic idea be-
hind the LIOMs scheme is to find a unitary transformation U
that defines a similar complete set of independent pseudospin-
1/2 operators:

τ z
i = Uσ z

i U †. (6)

With the above considerations, the following properties are
fulfilled by the τ z

i operators [12]:

054202-2



STRUCTURAL PROPERTIES OF LOCAL INTEGRALS OF … PHYSICAL REVIEW B 106, 054202 (2022)

(i) τ z
i ’s are quasilocal operators, in the sense that∣∣∣∣[τ z

i , σ
a
j

]∣∣∣∣ < ce−|i− j|/ξ , (7)

for a = +,−, z, and some ξ, c.
(ii) τ z

i are exactly conserved operators and commute with
each other: [H, τ z

i ] = 0 and [τ z
i , τ

z
j ] = 0.

(iii) τ z
i have eigenvalues ±1 ((τ z )2 = 1) and each subspace

has exactly dimension 2L−1.
The unitary U is a composition of local unitary transfor-

mations as described by Refs. [35,36]. With the same unitary
transformation, one can also define τ±

i , which completes the
Pauli algebra. Once the operators τ z

i has been determined, one
can use it to write the Hamiltonian H as a sum of local terms
of these interacting LIOMs as

H =
∑

i

εiτ
z
i +

∑
i j

Ji jτ
z
i τ

z
j +

∑
i jk

Ji jkτ
z
i τ

z
j τ

z
k + · · · , (8)

where the couplings between clusters of pseudospins Ji1,...,ia
are local in the sense that they decay exponentially as a func-
tion of any couple of indices.

It is obvious that each arbitrary arrangement of the eigen-
vectors of Hamiltonian H in the unitary matrix U of Eq. (6)
results in a new set of τi operators which satisfy the above-
mentioned properties (ii) and (iii) by default. However, we
are interested in finding a complete set of τi operators that
also fulfills the quasilocality requirement which is defined in
Eq. (7). Therefore, our goal is to identify a specific arrange-
ment of the eigenstates in U that best fulfill properties (i)–(iii)
altogether.

For all choices of W and �, total magnetization is a
conserved quantity which implies the conservation of the z
component of the total spin, [Sz

t , H] = 0 with Sz
t = ∑L

i=1 Sz
i .

Therefore, it defines a good quantum number and we can con-
sider different magnetization sectors separately. Throughout
the paper, we use the standard notation |n〉 ≡ |Sz

1, Sz
2, ..., Sz

L〉
with Sz

i =↑,↓ for the basis states in real space. In this no-
tation, n in |n〉 is a decimal integer can be obtained from
the L-bit binary representation |n1n2...nL〉 as n = ∑L

i=1 ni2i−1,
where ni = 0, 1 stands for Sz

i =↓,↑ respectively. Using these
basis states, we consider an initial set of the basis vectors
{|n〉} in such a way that the Hamiltonian H is block diago-
nalized and each block corresponds to a subspace with a fixed
magnetization. Here we are interested to introduce an efficient
way of ordering the LIOM basis states. We use the idea of
Ref. [14], which considers a one-to-one mapping between
initial basis states |n〉 and the eigenstates of the system and
develop our own scheme to introduce a systematic way of
performing such a mapping process. Therefore, we will use
the same labeling scheme in which each LIOM basis state
can be shown by a binary spectrum as |̃n〉 ≡ |τ z

1 , τ
z
2 , ..., τ

z
L〉

with effective pseudospin τ z
i = ↓̃, ↑̃. Again, it is convenient to

obtain the corresponding integer ñ for each LIOM basis vector
from its binary representation as before. In what follows, we
introduce an optimal ordered set of basis states that makes the
unitary operator

U =
∑

n

|̃n〉〈n| (9)

and can be used in Eq. (6) to form a complete set of LIOMs
with our desired properties (i)–(iii).

We begin to construct our own approach by considering
the noninteracting case, (� = 0). In this case, as we already
mentioned, LIOMs can be characterized by conserved occu-
pations of single-particle eigenstates and, hence, only the first
term on the right-hand side remains in Eq. (8). We start with
the reference state |0〉 with all spins down as the only possible
state in its magnetization sector which is also an eigenstate of
the system. Therefore, it has a similar representation on both
the original and LIOM basis, i.e., |↓̃↓̃...↓̃〉︸ ︷︷ ︸

L

= | ↓↓ ... ↓〉︸ ︷︷ ︸
L

.

By flipping one spin in |0〉, we get a new state with Sz
t =

L/2 − 1 and since we have L places for this spin, we have L
states in this sector. These states, which are supposed to be
ordered according to their binary code, form the original basis
states spanning the single-particle block of the Hamiltonian
H . After diagonalizing Hamiltonian H , we obtain a set of
eigenstates |ψm〉 which needs to be ordered. According to
the quasilocality criterion of Eq. (7), we expect an ordered
set in which each pseudospin operator τ z

i is mostly localized
around a physical spin operator in real space. Therefore, we
can order the obtained eigenstates by determining their max-
imum overlap with the original basis states. For instance, the
first eigenstate is the one that has maximum overlap with the
first original basis state. Thus, we need to find the maximum
available overlap among the set {|〈↑ ↓↓ ... ↓︸ ︷︷ ︸

L−1

|ψm〉|2, m =

1, ..., L}. If the m0th eigenstate is the one with maximum over-
lap with the first original basis state, it is the first basis state in
pseudospin space, which means that |↑̃ ↓̃↓̃...↓̃︸ ︷︷ ︸

L−1

〉 = |ψm0〉. By

the same token, it is possible to determine the jth eigenstate
of this sector by defining the following sequence of eigenstate
overlaps for the remaining eigenstates:{

α j
m = |〈↓ ... ↑︸︷︷︸

jth

↓ |ψm〉|2,

m = 1, ..., m0 − 1, m0 + 1, ..., L
}
, (10)

and finding the eigenstate which maximizes the above overlap
and labeling it with |↓̃... ↑̃︸︷︷︸

jth

↓̃〉.

We now proceed to the next sector which has L(L − 1)/2
basis states with two flipped spins which can be represented
by the following notation:

| j1, j2〉 = S+
j1

S+
j2
|0〉 = | ↓ ... ↑︸︷︷︸

j2th

... ↑︸︷︷︸
j1th

... ↓〉. (11)

The indexes j1 and j2 immediately determine the associated
integer number n of this basis vector accordingly. Therefore,
if we are looking for the ñth eigenstate in our optimized set,
we should find the one with maximum overlap with its cor-
responding basis vector. That is, finding the maximum value
among the following set of overlaps:

{|〈 j1, j2|ψm〉|2, m = 1, ..., L(L − 1)/2}, (12)
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and label it as ñ. The same analysis can be performed in
higher-excitation sectors to arrange the final ordered set of the
eigenstates properly.

Besides its ease of use and implementation, the main ad-
vantage of the above-mentioned algorithm is that it can be
generalized even for the case of an interacting system (� �=
0). At the same time, it provides an opportunity to consider
the whole Hamiltonian in the full Hilbert-space of the sys-
tem simultaneously. This is because each eigenstate has only
nonzero amplitudes on the basis states of its own sector and
hence, in our scheme there is a one-to-one mapping between
initial basis states and their corresponding eigenstates of the
same sector which prevents sector mixing. Consequently, if
the initial basis states are chosen in such a way that the
Hamiltonian is block diagonal, the resulting unitary matrix
U of the eigenstates obtained after performing our ordering
procedure is also block-diagonal. In the remainder of this sub-
section, we elaborate on the implementation of the algorithm
which allows ordering a generic set of energy eigenstates of
the system in such a way that the resulting LIOMs satisfy our
desired properties (i)–(iii).

Suppose that we have an initial set of the basis vectors
|n〉 in which our Hamiltonian matrix is block diagonal. We
can diagonalize this Hamiltonian and obtain the set of energy
eigenbasis which is an arbitrary (but fixed) arrangement of en-
ergy eigenbasis of the system. Our aim is to rearrange them by
assigning a decimal integer that determines their index in our
final optimum set. Doing so, we use the fact that each eigen-
state of the system is a 2L component vector which can be
expanded based on the Hilbert-space original basis vectors |n〉
as |ψi〉 = ∑2L

n′=1 Ai
n′ |n′〉. We can label a given eigenbasis |ψi〉

by integer number n if this eigenstate has the largest absolute
amplitude on |n〉 among all the eigenstates of the system. This
means that one needs only to find the index n in such a way
that |Ai

n|2 is the largest value of the set {|Ai
n|2, i = 1, ..., 2L}.

In other words, if we consider matrix U , which initially con-
tains the eigenbasis of the Hamiltonian in its columns with
an arbitrary arrangement, to find the nth eigenstate in our
desired order, we need just to look at the nth row of U and
determine which column has the maximum absolute value in
this row. This procedure is represented graphically in Fig. 1.
The repeated execution of this procedure results in our optimal
arrangement of the eigenstates which can optimally satisfy our
desired conditions. The procedure outlined above is accurate
in the sense that the resulting LIOMs are exactly conserved
operators and it is fast because it requires less computational
effort as compared to other schemes [22–24] that are based
on exact diagonalization. The reason is that in our method,
unlike in the above-mentioned schemes, we no longer need to
evaluate the expectation values of physical spin operators (L
operations) for each energy eigenstate to determine its order
in our desired set of eigenstates in U . This will reduce the
computational cost associated with rearranging all the eigen-
states in U by a factor of (L× the number of eigenstates)
totally. Consequently, since the procedure outlined above does
not essentially require the strong disorder limit and, on the
other hand, is very simple and fast, and we can use it to
obtain our optimum and complete set of LIOMs rapidly and
study some structural properties of the system across the phase
transition.

FIG. 1. Graphical representation of the procedure outlined in
Sec. II B to arrange the eigenstates of the system in the unitary
matrix U which is obtained after diagonalization. The left side shows
the matrix of eigenvectors obtained via the exact diagonalization
procedure in which usually the eigenstates are ordered according
to their corresponding eigenvalues. The right side is the matrix of
eigenstates after rearranging them using our algorithm.

III. RESULTS

To examine our method, we have carried out numerical
calculations based on the exact diagonalization technique. In
what follows, we consider a spin chain with L spins and open
boundary conditions. To gain a deeper understanding of the
role of interaction in the MBL case, we consider our model in
both interacting (� = 1) and noninteracting (� = 0) regimes,
and depending on the system size L, 105 to 5 × 103 disorder
realizations are employed to obtain the statistics.

A. Effective characterization of LIOM locality

In this section, we demonstrate the quasilocality of the
resulting LIOM operators obtained by our algorithm. To this
end, we use the two-point correlator between a LIOM operator
τ z

j and physical spin σk which is expected [17,18,23] to decay
exponentially with distance |k − j| as〈

τ z
j σ

z
k

〉 = Tr
(
τ z

j σ
z
k

) ∼ exp (−|k − j|/ζ ), (13)

when j and k are far apart in the MBL regime. In Eq. (13), ζ

defines a length scale over which the corresponding LIOM
operators are localized. This length scale is related to the
spatial correlation length of the eigenstate amplitudes on the
Fock space [37,38] and expected to diverge at the critical
point.

Figure 2(a) shows the behavior of the logarithm of two-
point correlator 〈τ z

j σ
z
k 〉 versus | j − k| for the LIOM operator

which is located near the center of chain in the presence of
interaction, � = 1. It is obvious that in the deep localized
regime (W � 5), the LIOM operators τ z

j are strongly local-
ized, and the 〈τ z

j σ
z
k 〉 profile is mostly localized near the origin

j with a fast decaying function to the neighborhood. This
is in contrast to the delocalized regime (W � 2.5) in which
such a fast decaying part is obviously absent. Furthermore,
there is a clear size dependency, especially near the origin
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FIG. 2. Decay of two-point correlator [log(〈τ z
j σ

z
k 〉)] for the

LIOM operators localized near the chain center versus | j − k| for
different system sizes L = 8 − 16 and disorder intensities in both
(a) interacting (� = 1) and (b) noninteracting (� = 0) regimes. In-
sets show the divergence of length scale ζ as a function of (W − Wc )
in the presence and absence of interaction, respectively

which is the characteristic feature of ergodic regime. To make
a comparison with noninteracting system (� = 0), we have
shown the behavior of the 〈τ z

j σ
z
k 〉 profile for this regime in

Fig. 2(b). In this case (� = 0), even for very small disorder
strength W = 0.5 the faster decaying behavior as well as
weaker size dependency can be observed in comparison to the
MBL counterpart (� = 1).

It is also worth mentioning that the characteristic length
scale ζ can be extracted from the linear part of the log(〈τ z

j σ
z
k 〉)

versus | j − k| for the largest system size to observe its diver-
gence near the transition point. The inset shows the power-law
divergence of the ζ as a function of (W − Wc) on approaching
the transition point (Wc = 3.0 and Wc = 0.0 in the presence
and absence of interaction, respectively) in the localized
regime (W > Wc).

Although the above comparison between the locality of
LIOMs in both interacting and noninteracting systems is
a piece of qualitative evidence for their difference in the
sense of critical disorder needed for localization transition,
we will elaborate on this more quantitatively in the coming
sections and discuss the critical disorder Wc on which the
transition takes place in detail.

B. Percolation transition in connected clusters associated with
LIOMs in the Hilbert space

In this section, we introduce a classical percolation prob-
lem associated with clusters of LIOMs in the Hilbert space.
Indeed, LIOMs are dressed versions of spin operators as given
by Eq. (6) and can be viewed as a matrix with elements (τ z

i )mn

(m and n refer to the row index and column index of this ma-
trix, respectively) in the basis of product states in the Sz basis.
Our idea is to interpret this matrix as an adjacency matrix
representation of a finite directed graph in which the off-
diagonal matrix elements of a given LIOM operator express
whether two nodes (basis) are adjacent or not. According to
the above discussion, we can write the adjacency matrix like
the following:

Cmn =
{

1, i f
∣∣(τ z

i

)
mn

∣∣ > ηc

0, otherwise.
(14)

Here, ηc is a connectivity threshold for deciding below
which edge between a pair of basis states on the Hilbert-space
graph will be removed or not. It is obvious that if ηc = 0,
we always have a single connected cluster that contains all
basis states of the Hilbert space. Therefore, we need to take
a nonzero connectivity threshold, ηc > 0, for the rest of our
analysis, which we will describe how to do in the following.

One detail should be described before discussing the es-
timation procedure. The point is to restrict our numerical
calculations to the largest subspace with zero total spin, be-
cause the size of the Hilbert space grows exponentially and
total magnetization is a conserved quantity in our system.
This subspace contains NH = (L

L
2
) states (nodes). Thus, one

naturally expects to have only a single connected cluster with
size (number of nodes) NH for a very weak disorder intensity,
namely, 0 < W � 1. This criterion will give us an upper
bound for the parameter ηc. In our computation below, we
take the maximum possible value for ηc according to its upper
bound. Figure 3 shows a typical LIOM operator (represented
as a matrix) and its adjacent Hilbert-space graph which is
obtained with ηc = 0.05 for a spin chain with L = 10 spins for
two random realizations of disorder with disorder strengths
W = 2, 6 in the MBL regime (� = 1).

1. Cluster-size analysis

In the theory of lattice percolation, the emergence of a
spanning cluster at the percolation threshold which connects
two opposite boundaries on the lattice is a measure of per-
colation transition [39]. It is obvious that such a definition
doesn’t really make sense for our considered network here.
Therefore, in this subsection, we characterize the percolation
transition by analyzing the size of the largest and second-
largest connected cluster [40] associated with LIOMs in the
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FIG. 3. The left side shows the graphical representation of matrix
elements of a typical LIOM operator obtained using Eq. (6) and the
ordered set of eigenvectors in unitary matrix U . The right side is the
corresponding adjacent graph of the same LIOM operator in the basis
of product states in the Sz basis for a spin chain with length L = 10
spins for two different disorder intensities W = 2 (upper panel) and
W = 6 (lower panel) in the MBL regime (� = 1).

Hilbert space. Starting from the low disorder limit, W � 1,
we expect to have only a single connected cluster with size
S1 = NH which contains all the nodes of Hilbert space. Due
to the localization of eigenstates, one expects to observe a
decrease in the largest cluster size by increasing the disorder
intensity which means that it only contains a finite fraction
of Hilbert-space nodes. In the percolation language, this is
equivalent to the formation of smaller size clusters in the
network.

We start to illustrate our percolation scenario by calculating
the fraction of the largest cluster, defined as the relative size
of the largest connected cluster with respect to the Hilbert-
space dimension, S1/NH . Figure 4 shows how the mean largest
cluster size which is averaged over different realizations of
disorder decreases as a function of disorder intensity W for
a spin chain of length L = 16. Additionally, we can also
compute the average size of the second-largest cluster S2 to
confirm the transition threshold. This is because, on finite
systems, the size of the largest cluster grows by adding smaller
clusters, and therefore it is possible to determine the vicin-
ity of the transition point by locating the point where the
second-largest cluster size reaches its maximum. The peak
position coincides with the percolation threshold in the ther-
modynamic limit [40]. We observe that the normalized size
of the second-largest cluster, S2/Smax

2 , also peaks near the
percolation transition. We have plotted the same quantities
for both noninteracting and interacting regimes in Figs. 4(a)
and 4(b), respectively, to make a comparison possible. It is
obvious that the presence of interaction shifts the percolation

FIG. 4. Behavior of the average largest and second-largest clus-
ter sizes versus disorder intensity W for a spin chain with L = 16
spins in both (a) the noninteracting (� = 0) and (b) interacting
(� = 1) regimes. It is obvious one needs a stronger disorder to reach
the nonpercolating regime in the presence of interaction.

threshold Wc toward the stronger intensity of disorder, how-
ever, we leave the discussion of more accurate determination
of such a percolation threshold for the sections that follow.

2. Universal feature and finite-size scaling analysis near the
transition point

The more precise determination of the percolation thresh-
old for the adjacent graph of the LIOMs can be obtained using
scaling analysis. Following the arguments of Ref. [29], we
first focus our attention on the scaling of the mean cluster size,
and since the largest cluster is not essentially a typical one, we
take the cluster C that contains the basis state of corresponding
eigenstate |ψ0〉 with the closest energy to the mean value of
the energy spectrum and compute the geometric average of its
size over different realizations of disorder as

Styp = exp

(
1

Nr

∑
r

ln(sr )

)
. (15)

Here, sr is the number of nodes (eigenstates) in the cluster C
for a given realization r of disorder and Nr is the number of
disorder realizations. According to the finite-size scaling [39],
the scaling of the normalized cluster sizes near the transition
point can be stated as [29]

Styp/NH ∼ f ((W − Wc)L
1
ν ), (16)

in which the exponent ν is called the correlation length ex-
ponent. Therefore, by performing data collapse analysis, it is
possible to obtain the percolation threshold Wc and critical
exponent ν. The results of such data collapse, yielding the
critical exponent ν(� = 1) = 2.0 and ν(� = 0) = 2.5 in the
presence and absence of interaction is shown in Figs. 5(a)
and 5(b), respectively. We should emphasize that in the data
collapse procedure in the noninteracting regime � = 0, we
constrained the critical point Wc = 0.0 as a transition point
of the corresponding XX model [41]. We note that the re-
sulting exponent ν satisfies the Harris-CCFS bound (ν � 2

d )
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FIG. 5. The resulting data collapse of Styp/NH onto a scaling
function of (W − Wc )L1/ν which is obtained for spin chains with
different lengths (L = 8 − 16) both in the (a) absence � = 0 and
(b) presence � = 1 of interaction in the localized phase. The crit-
ical parameters Wc = 3.0, 0.0, and ν = 2.0, 2.5 is obtained for the
case of MBL and Anderson transition, respectively. Insets show the
corresponding raw data.

[42,43], confirmed for the ergodic to MBL transition recently
[29,44,45].

In addition, the percolation threshold is quite different as
Wc = 3.0 and Wc = 0.0 for the case of the interacting and
noninteracting systems, respectively. It is worth mentioning
that beyond the error of our analysis, the percolation thresh-
old for the case of the interacting system coincides with the
ergodic to MBL transition point Wc ≈ 3.5 [33], which shows
that our system experiences a percolation transition in its
corresponding LIOMs across the MBL transition.

Before ending this subsection, let us shed more light on
the effect of changing the estimated parameter ηc in our clus-
terization mechanism. As we already discussed, we set the
value of this parameter by the largest value of ηc for which the
size of the largest cluster is exactly equal to the Hilbert-space
dimension NH . It is certainly possible to consider smaller

nonzero values for the connectivity threshold parameter (any
value in (0, ηc]). However, our investigations showed that the
changing of ηc may change a bit the percolation threshold Wc,
but the correlation length exponent ν will not change.

C. Distribution of local observables on the clusters

The last quantity which we are interested in is the distribu-
tion of the eigenstate expectation values of local observables
which are shown to vary significantly across the MBL tran-
sition [46,47]. In doing so, let us consider cluster C, which
contains the eigenstate |ψ0〉 with size s, as we discussed be-
fore, and define the following quantity for the cluster [29]:

ml = 1

s

′∑
n

〈n|τ z
l |n〉, (17)

where
∑′ denotes the restrictions imposed by considering

only the eigenstates in C in summation. This is indeed the
average local magnetization of the cluster and can be obtained
by averaging only over the diagonal entries of the correspond-
ing LIOM operator which belongs to the cluster C. We are
interested in the distribution of this quantity which is averaged
over different realizations of disorder.

Before going further, let us point out the meaning of the
diagonal element of τ z

l using Eqs. (6) and (9),

〈n|τ z
l |n〉 =

∑
m

(
σ z

l

)
mm|ψm(n)|2, (18)

where ψm(n) represents the amplitude of the mth eigenstate on
the nth basis state and (σ z

l )mm is the mth element of diagonal
matrix σ z

l with entries +1 or −1. Now, the average local mag-
netization of cluster C defined in Eq. (17) can be expressed as

ml = 1

s

′∑
n

∑
m

(
σ z

l

)
mm|ψm(n)|2. (19)

Figure 6 shows the distribution of this quantity for the
largest system size L = 16 spins in both MBL and Anderson
regimes. In the case of interacting regime � = 1 for weak dis-
order intensity W = 0.5, we have a single peak around zero.
This is because in the ergodic phase, cluster C contains all the
basis states of the Hilbert space and, hence,

∑′
n → ∑NH

n=1 and
s = NH . Therefore, it is convenient to perform the summation
over n first and use the normalization condition of the eigen-
states,

∑
n |ψm(n)|2 = 1, which results in ml = Tr(σ z

l ) = 0.
This is the reason for observing a single peak at ml = 0 in the
distribution function P(ml ) in Fig. 6 for weak disorder regime
(W = 0.5 and � = 1).

By increasing the disorder intensity W , since the size of
cluster C starts to deviate (decreases) from the size of Hilbert
space, some of the nodes (basis states) will be excluded from
the summation over n in Eq. (19). Consequently, it is the
eigenstate profile ψm(n) in Eq. (19) which plays a crucial
role in characterizing the distribution function P(ml ) and one
needs to know its exact form to describe the smooth part
of P(ml ) in the intermediate regime Wc < W < ∞. For the
case of very strong disorder limit (W → ∞), the probability
of having only a single node in cluster C increases, which
yields ψm(n) ∼ δm,n and s = 1 and hence ml = ±1. So one
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FIG. 6. Distribution function P(ml ) of the average local magnetization of cluster ml , which is the average expectation values of LIOM
operator τ z

l over the nodes of this cluster both for � = 0 and � = 1.

naturally expects to observe two single peaks at ml = ±1 for
the distribution function P(ml ) in this regime. The plots in
Fig. 6 show that the existence of such single-node clusters is
much more probable even for very small disorder intensities
in the case of the noninteracting regime (� = 0).

IV. CONCLUDING REMARKS

We provided a fast and accurate method to efficiently
obtain LIOMs for a disordered system that undergoes MBL
transition. We showed that an optimized set of eigenvectors
obtained by locating their maximum overlap with Hilbert-
space basis can be used to obtain the desired set of LIOM
operators. We showed that the resulting LIOMs experience a
percolation transition in their graph representation in Hilbert
space by increasing disorder intensity. We also compared the

critical disorder and critical exponent describing percolation
transition for both interacting (MBL) and noninteracting (An-
derson) regimes. Our analysis showed that there is a concrete
connection between the ergodic to MBL transition and the
structural properties of LIOMs in their graph representation
on the Hilbert space.
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The Tree Tensor Operator (TTO) [1] is here introduced as a tensor network ansatz to efficiently 

represent certain classes of mixed many-body quantum states. The TTO guarantees positivity 

of the density matrix by construction and makes some quantities like purity and entropy easily 

accessible. Moreover, it is very suitable for the calculation of the Entanglement of Formation 

(EoF) [2], a notoriously hard, but very important problem for mixed many-body quantum 

states. We will show the application of the TTO to the calculation of the EoF for low-

temperature thermal states of the 1D critical Ising model for up to 128 sites.  
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Identification of Symmetry-Protected Topological States on
Noisy Quantum Computers

D. Azses, R. Haenel, Y. Naveh, R. Raussendorf, E. Sela, and E. G. Dalla
Torre

Identifying topological properties is a major challenge because, by definition, topologi-
cal states do not have a local order parameter. While a generic solution to this chal-
lenge is not available yet, a broad class of topological states, namely, symmetry-protected
topological (SPT) states, can be identified by distinctive degeneracies in their entangle-
ment spectrum [1]. Here, we propose and realize two complementary protocols to probe
these degeneracies based on, respectively, symmetry-resolved entanglement entropies and
measurement-based computational algorithms [2]. The two protocols link quantum infor-
mation processing to the classification of SPT phases of matter. They invoke the creation
of a cluster state and are implemented on an IBM quantum computer. The experimental
findings are compared to noisy simulations, allowing us to study the stability of topolog-
ical states to perturbations and noise. [3]
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120502 (2020).

P03



Surface codes, quantum circuits, and entanglement phases

Jan Behrends1, Florian Venn2, and Benjamin Béri1,2

1T.C.M. Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue,
Cambridge, CB3 0HE, UK

2DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

Surface codes—leading candidates for quantum error correction (QEC)—and entangle-
ment phases—a key notion for many-body quantum dynamics—have heretofore been un-
related. Here, we establish a link between the two. We map two-dimensional (2D) surface
codes under a class of incoherent or coherent errors (bit flips or uniaxial rotations) to
(1+1)D free-fermion quantum circuits via Ising models. We show that the error-correcting
phase implies a topologically nontrivial area law for the circuit’s 1D long-time state |Ψ∞⟩.
Above the error threshold, we find a topologically trivial area law for incoherent errors and
logarithmic entanglement in the coherent case. In establishing our results, we formulate
1D parent Hamiltonians for |Ψ∞⟩ via linking Ising models and 2D scattering networks,
the latter displaying respective insulating and metallic phases and setting the 1D fermion
gap and topology via their localization length and topological invariant. We expect our
results to generalize to a duality between the error-correcting phase of (d+1)D topological
codes and d-dimensional area laws; this can facilitate assessing code performance under
various errors. The approach of combining Ising models, scattering networks, and parent
Hamiltonians can be generalized to other fermionic circuits and may be of independent
interest.
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Kinetically constrained models have recently been object of intensive investigation, due to
their relation with the topic of ergodicity breaking in terms of Hilbert space fragmentation
and quantum many-body scars. In a few recent works [1, 2], the nature of transport
in various kinetically constrained models was investigated, showing anomalous results
ranging from strong subdiffusion to superdiffusion. Inspired by the rich landscape of
transport properties of kinetically constrained models, in this work we introduce a binary
driving protocol alternating two different kinetic constraints. The system is evolved for a
first pulse under theparticle-conserving East model Hamiltonian [3, 4], and subsequently
a second pulse applies the analogous West Hamiltonian, where the action of the kinetic
constraint si mirrored with respect to the East model. Our scheme is simple, yet the
results are non-trivial due to the frustration in the dynamics induced by the competition
of the two constraints. Using advanced numerical techniques, we investigate the system
and explore its rich dynamical properties, showing state-dependent behavior ranging from
localization to directional transport and eventually fast thermalization.
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(2021).
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Measurement in Quantum Mechanics is among the most fundamental and debated 
processes in modern physics. In theory, it can be described by pure stochastic quantum 
trajectories, or continuous master equations for the mixed state. Whereas both descriptions 
lead to the same measurement statistics for linear observables, the quantum trajectory 
entanglement shows measurement-induced transitions (MITs) invisible to the steady-state 
density matrix. Moreover, there is no standard way to quantify the entanglement of mixed 
states. Recently, we have introduced the “configuration coherence”, a mixed-state 
entanglement measure for systems with a fixed conserved charge. Here, we employ the 
configuration coherence to demonstrate that entanglement in both the trajectories and 
master equation approaches reveal the MIT. Our finding suggests that the MIT is a 
manifestation of coherent-to-diffusive crossover in quantum random walks. 
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Entanglement transition in monitored free fermions in 2D
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We examine the entanglement structure of a monitored fermionic system in d = 2
dimensions. Both analytical considerations and numerical results point to a connection
between this setting and the one of disorder-induced localization in d+1 dimensions. This
is studied both from the perspective of the measurement-induced entanglement transition
and the observables typically considered in disorder-induced localization transitions, such
as the inverse participation ratio (IPR). Our results suggest the presence of an entan-
glement transition from a phase with subextensive entanglement growth to an area-law
regime. Furthermore, the IPR displays signature features of a metal to insulator transi-
tion.
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Alexander D. Mirlin1,2 and Dmitry G. Polyakov1

1Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology,
76021 Karlsruhe, Germany

2Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology,
76128 Karlsruhe, Germany

3 Department of Condensed Matter Physics, Weizmann Institute of Science, 7610001
Rehovot, Israel

4 Ioffe Institute, 194021 St. Petersburg, Russia

Measurement-induced phase transitions are the subject of intense current research, both
from an experimental and a theoretical perspective. We explore the concept of implement-
ing quantum measurements by coupling a many-body lattice system to an ancillary degree
of freedom (imple- mented using two additional sites), on which projective measurements
are performed. We analyze the effect of repeated (“stroboscopic”) measurements on the
dynamical correlations of interacting hard-core bosons in a one-dimensional chain. An im-
portant distinctive ingredient of the protocol is the fact that the detector ancillas are not
re-initialized after each measurement step. The detector thus maintains memory of the
accumulated influence by the measured correlated system. Initially, we consider a model
in which the ancilla is coupled to a single lattice site. This setup allows obtaining infor-
mation about the system through Rabi oscillations in the ancillary degrees of freedom,
modulated by the ancilla-system interaction. The statistics of quantum trajectories ex-
hibits a “quantum-Zeno-valve effect” that occurs when the measurement becomes strong,
with sharp branching between low and high entanglement. We proceed by extending nu-
merical simulations to the case of two ancillas and, then, to measurements on all sites.
With this realistic measurement apparatus, we find evidence of a disentangling-entangling
measurement-induced transition as was previously observed in more abstract models. The
dynamics features a broad distribution of the entanglement entropy.

[1] Elmer V. H. Doggen et al. arXiv:2303.07081.
[2] Elmer V. H. Doggen et al. Phys. Rev. Research 4, 023146 (2022).
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Multipartite Entanglement Structure and different
Thermalization Regimes

Luis Fernando dos Prazeres1, Thiago Rodrigues de Oliveira1, and Fernando
Iemini1

1Instituto de F́ısica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil

Thermalization in closed quantum systems is still a discussed topic in physics. In
classical mechanics, the mechanism behind thermalization is the chaoticity and ergodic-
ity but for quantum systems, there is no trajectory in the classical sense, therefore to
understand how thermalization emerges in quantum mechanics, physicists need to unfold
different proprieties from nature to guarantee if a system is going to thermalize or not.
One of the attempts to explain this phenomenon was given by Deutsch in [1] and Sred-
nicki in [2] and they discussed that the eigenstates of the Hamiltonian can give thermal
properties of some observables given that the expectations values of this observables in
the energy eigenbasis do not vary too much for neighbor eigenstates. This idea is called
the eigenstate thermalization hypothesis (ETH).

Moreover, the system of interest is not alone in the way of thermalizing. The pertinent
question is: Given an initial condition for some Hamiltonian the expectation value of an
observable Â would be thermal? In this work, we want to discuss how entanglement dy-
namics can unfold the peculiar thermal properties of the system. We study a Hamiltonian
which shows two thermalization regimes known as weak and strong thermalization [3], the
model studied was realized experimentally in [4], observing both. Strong thermalization
occurs when the initial state evolves to the equilibrium value of the observable. Weak
thermalization is the lack of equilibrium for some initial state, but its time average is
thermal.

The results were obtained via exact diagonalization (ED) and we observed that en-
tanglement dynamics from initial conditions which shows weak and strong thermalization
has different entanglement structures, furthermore, the difficulty to reach the equilibrium
value was also explained with the effective dimension for the initial state in the energy
basis [5]. The connection between energy, effective dimension, and entanglement structure
can be seen for each initial condition studied in [4] giving another point of view about
why weak thermalization is observed.

[1] J. M. Deutsch Phys. Rev. A 43, 2046 (1991)
[2] Mark Srednicki Phys. Rev. E 50, 888 (1994)
[3] M. C. Bañuls, J. I. Cirac, and M. B. Hastings Phys. Rev. Lett. 106, 050405 (2011)
[4] Chen, Fusheng, et al, Phys. Rev. Lett., 127, 2, 020602, 6, 2021,
[5] T. R. de Oliveira, et al, New J. Phys. 20, 033032 (2018).
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Non–Stabilizerness in a Monitored Quantum Many–Body
System

Gerald E. Fux1 and Rosario Fazio1

1The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera
11, I-34151 Trieste, Italy

Entanglement phase transitions in monitored many–body open quantum systems have at-
tracted a lot of attention in recent years. The robustness of the volume law phase against
a finite measurement rate is of particular interest because entanglement constitutes an
important resource for quantum computation. However, to achieve a quantum advantage
over classical computation not only entanglement but also so–called non–stabilizerness, or
magic, is a necessary resource. Non–stabilizerness describes the distance between quantum
circuits and their closest stabilizer circuits that can be simulated classically with polyno-
mial resources. In this work, we thus pose the question whether there exists a transition
of non–stabilizerness in many-body quantum circuits with both measurements and non–
stabilizer unitary gates. We numerically compute and analyze the non–stabilizerness of
many-body quantum trajectories in such a hybrid quantum circuit employing a recently
proposed measure [1, 2].

[1] L. Leone, S.F.E. Oliviero, and A. Hamma, Phys. Rev. Lett. 128, 050402 (2022).
[2] G. Lami, M. Collura, arXiv:2303.05536 (2023).
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Exponential shortcut to measurement-induced entanglement phase transitions 

Ali G. Moghaddam1,2, Kim Pöyhönen2, Teemu Ojanen2 
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Recently discovered measurement-induced entanglement phase transitions in monitored 
quantum circuits provide a novel example of far-from-equilibrium quantum criticality. Here, 
we propose a highly efficient strategy for experimentally accessing these transitions through 
fluctuations. Instead of directly measuring entanglement entropy, which requires an 
exponential number of measurements in the subsystem size, our method provides a scalable 
approach to entanglement transitions in the presence of conserved quantities. In analogy to 
entanglement entropy and mutual information, we illustrate how bipartite and multipartite 
fluctuations can both be employed to analyze the measurement-induced criticality. 
Remarkably, the phase transition can be revealed by measuring fluctuations of only a handful 
of qubits.  
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Temporal Entanglement and Trotter Transitions in unitary
quantum circuits

Giuliano Giudici1

1 Institute for Theoretical Physics, University of Innsbruck, A-6020, Innsbruck, Austria
2 planqc GmbH, D-85748 Garching, Germany

It is a notoriously hard problem to access the long-time dynamics of a many-body system
after a global quench with tensor network methods, due to the linear growth of entangle-
ment with time. In this talk, I will revisit a clever approach that attempts to overcome
this limitation by approximating correlation functions on infinite systems with matrix
product states (MPSs) in the temporal direction. I will provide non-trivial examples of
strictly discrete dynamics where this MPS approximation becomes efficient (and even ex-
act in some cases!), allowing one to compute expectation values of local observables for
arbitrarily long times. Finally, I will discuss how the infinite-time steady state of this
discrete dynamics connects to the time-continuum limit, and establish the emergence of
sharp transitions as the Trotter step is varied.

[1] G. Giudice, G. Giudici, M. Sonner, J. Thoenniss, A. Lerose, D. A. Abanin, L. Piroli, Phys.
Rev. Lett. 128, 220401 (2022).

[2] E. Vernier, B. Bertini, G. Giudici, L. Piroli, Phys. Rev. Lett. (Accepted)

P12



Computation of Microcanonical Entropy at Fixed Magnetization 
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We developed the method to determine the microcanonical entropy at fixed magnetization 

starting from the canonical partition function. The presented method is based on the introduction 
of one (or more) auxiliary variables and on a min-max procedure, where the minimization is 
performed on the variable β, which can be both positive or negative. We emphasized that the 
method can be very useful where direct counting is not applicable or very difficult/convoluted. We 
applied our results to the case of systems having long- and short-range (possibly competing) 
interactions. 
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Title- Many-body quantum chaos with randomized measurements 
Authors- Theory: L. Joshi, A. Elben, A. Vikram, B. Vermersch, V. Galitski, P. Zoller 

Experiment: K. Collins, A. De, W. Morong, C. R. Monroe 
 
 

 
Abstract- The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a 
key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) 
can be defined which refer to subsystems of the many-body system. They provide unique 
insights into energy eigenstate statistics of many-body systems. We propose a protocol that 
allows the measurement of the SFF and pSFFs in quantum many-body spin models, within the 
framework of randomized measurements. Our protocol provides a unified testbed to probe 
many-body quantum chaotic behavior, thermalization and many-body localization in closed 
quantum systems. Furthermore, we present implementation of this protocol on a trapped ion 
quantum simulator employing the use of local random rotations and measurements. 
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Scaling Theory of Ergodic Scrambling

T. Kalsi1, A. Romito1, and H. Schomerus1

1Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

A robust diagnostic tool in the study of late-time quantum chaos is the spectral form
factor, calculated from the energy spectrum of a system. While this quantity is well
studied for late timescales, a crucial link to most physical settings is its extension to general
system dynamics, in particular the approach to ergodicity/chaos, termed ’scrambling’.
We investigate the spectral form factor in the context of stochastic quantum dynamics,
specifically treating the Wiener process before generalizing to any stochastic process that
is invariant under rotations. We aim at a general theory of ergodic/chaotic scrambling
which can be turned into a concrete algorithm to analyze any generic system. To this
end, we propose a scaling theory that provides a novel route for obtaining a benchmark
for dynamics generated from purely stochastic processes, against which we can compare
physical systems.
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Simulated cooling of fermionic systems on bosonic quantum
hardware

Gilad Kishony1, Mark S. Rudner2, and Erez Berg1

1(Presenting author underlined) Department of Condensed Matter Physics, Weizmann
Institute of Science, Rehovot 76100, Israel

2Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

We propose an efficient protocol for low energy state preparation of arbitrary gapped
fermionic Hamiltonians on a bosonic quantum simulator inspired by the one discussed in
[1] for bosonic systems. This procedure involves simulated cooling by coupling the target
system with a periodically monitored bath. By fermionizing the simulated target system
and the bath, we allow individual fermionic excitations of the system to hop to the bath
sites. In this way, we achieve a cooling rate linearly proportional to the density of these
excitations, despite the fact that they may be non-local in terms of the bosonic degrees
of freedom of the hardware. We apply our protocol to the 1d quantum Ising model which
has fermionic excitations, and numerically study the its performance in the presence of
noise. Our protocol can be applied to any fermionic system, including topological phases
in higher dimensions as we discuss in general and apply to the example of the Kitaev
honeycomb model. In general, topological states cannot be created from trivial states
by finite depth local unitary evolution, which explains the crucial role of measurements
used on the monitored bath. States with invertible topological order, such as the chiral
p-wave superconductor do not have this limitation, and can be prepared together with
their inverse states by such unitaries. This is achieved by our protocol even without the
need to monitor the state of the bath after unitary evolution is performed.

[1] A. Matthies, M. Rudner, A. Rosch, E. Berg, arXiv:2210.17256 (2022).

P16
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Eugene Kogan
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Abstract

We continue our previous studies of the localized travelling waves, more
specifically, of the shocks and the kinks, propagating in the series-connected
Josephson transmission line (JTL). The paper consists of two parts. In the first
part we calculate the scattering of the ”sound’ (small amplitude small wave
vector harmonic wave) on the shock wave. In the second part we study the sim-
ilarities and the dissimilarities between the shocks and the kinks in the lossy
JTL. We also find the particular cases, when the nonlinear equation, describing
weak travelling wave in the lossy JTL can be integrated in terms of elementary
functions.

Figure 1: Discrete Josephson transmission line
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where C is the capacitance, Ic is the critical current of the JJ, and CJ
and RJ are the capacitor and the ohmic resistor shunting the JJ.

In the continuum approximation we treat n as the continuous variable
Z and approximate the finite differences in the r.h.s. of the equations
by the first derivatives with respect to Z, after which the equations take
the form
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where we introduced the dimensionless time ⌧ = t/
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The shocks

U ('2 � '1) = V1 � V2, (4a)
U (V2 � V1) = sin'1 � sin'2, (4b)

where '1 and V1 are the phase and the voltage before the shock, '2
and V2 - after the shock, and U is the normalized shock wave velocity.
Note also the obvious result of (4a), (4b):
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Figure 2: Reflection of a sound wave from a shock wave
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where uin = u ('a) � U is the velocity of the incident sound wave
relative to the shock wave, and ur = u ('a) + U is the velocity of the
reflected sound wave relative to the shock wave.
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Figure 3: Transmission of a sound wave through a shock wave
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where uin = u ('b) + U is the velocity of the incident sound wave
relative to the shock wave, and ut = u ('a) + U is the velocity of the
transmitted sound wave relative to the shock wave.

For the travelling wave we obtain closed equation for '
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Figure 6: The phase plane of the boundary conditions ('1,'2). Blue regions cor-
respond to the shock wave moving to the right, green regions - to the left. Yellow
regions correspond to the kink moving to the right, red regions - to the left. The thick
black line '2 = �'1 corresponds to the kink, the thick black line '2 = '1 - to the
soliton which can exist only in the bare-bones JTL and propagate in both directions.
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Weak continuous measurement is described by the stochastic Schrodinger equation which updates the 
state according to a random variable associated with the readout. On the other hand, post-selecting all 
quantum trajectories will lead to a non-Hermitian dynamics. Here, we introduce partial post-selection 
which interpolates between fully stochastic to non-Hermitian dynamics where some quantum 
trajectories but not all are kept. We show that the corresponding stochastic Schrodinger equation is 
modified by a non-Hermitian term which dominates in the limit of strong post-selection. We then 
investigate the effect it has on measurement induced transition in which it is known that the 
universality in the fully post-selected limit is different from the fully stochastic limit. 
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Abstract: Tunable tachyon mass in the
PT-broken massive Thirring model

Benjamin Liégeois

May 2023

We study the full phase diagram of a non-Hermitian PT-symmetric gener-
alization of the paradigmatic two-dimensional massive Thirring model. Em-
ploying the non-perturbative functional renormalization group, we find that the
model hosts a regime where PT symmetry is spontaneously broken. This new
phase is characterized by a relevant imaginary mass, corresponding to mon-
stronic excitations displaying exponentially growing amplitudes for time-like
intervals and tachyonic (Lieb-Robison-bound breaking, oscillatory) excitations
for space-like intervals. Furthermore, since the phase manifests itself as an un-
conventional attractive spinodal fixed point, which is typically unreachable in
finite real-life systems, we find that the e↵ective renormalized mass reached can
be tuned through the microscopic parameters of the model. Our results further
predict that the new phase is robust to external gauge fields, contrary to the
celebrated BKT phase in the PT unbroken sector. The gauge field then provides
an e↵ective and easy means to tune the renormalized imaginary mass through
a wide range of values, and therefore the amplitude growth/oscillation rate of
the corresponding excitations.

1
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Dynamics of non-gaussianity under continuous measurements
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Measurement induced phase transitions were first described for random circuits, which
are prototypical chaotic systems. It was later observed that the entanglement of realistic
interacting models has the same phenomenology under continuous measurements: for
a small measurement rate below a critical value γc the system reaches a volume-law
entangled steady state, and for γ > γc there is a transition towards a Zeno phase, where
the entanglement is suppressed. The phase diagram remains the same regardless of the
interaction being chaotic or integrable, while free fermions behave differently: the volume
law phase is replaced by a logarithmic region. Why such a difference? The most peculiar
feature that distinguishes free fermions from other interacting models is gaussianity and
we investigate wether non-gaussianity can play a role in determining the entanglement
phases of a continuously monitored quantum system.
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A quantum system interacting with a chain of detectors (i.e., auxiliary degrees of freedom) one 

at a time can be described via a canonical stochastic master equation of the jump type, where 

the system either evolves continuously in a deterministic and unitary fashion or suffers a 

discontinuous evolution to a pure state. We generalize this model by introducing an external 

reservoir that interacts with the chain of detectors and the system and which induces new (and 

more complicated) terms, both stochastic and deterministic, to the canonical stochastic master 

equation (SME), making it of diffusive-jump type [1]. Contrary to the other canonical 

stochastic master equation of the diffusive type, the fluctuating generator is unitary and is 

corrected by an Itô correction in the form of a pure dissipator. The environment also contributes 

to the deterministic part of the given equation besides the detector's backaction. Moreover, once 

a jump occurs, it is toward a mixed state, contrasting even more with the canonical jump type 

equation. 

 

[1] Medina-Guerra, E., Kumar, P., Gornyi, I. V., & Gefen, Y. (2023). Quantum state 

engineering by steering in the presence of errors. arXiv preprint arXiv:2303.16329. 
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Sampling probability distributions of bosons passing through random unitary gates can b

e hard for classical computers, which can lead to the quantum supremacy [1]. However, samp

ling bosons in more general dynamics is not always hard and physical situations determine th

e hardness. From the viewpoint of computational complexity, we explore monitored dynamic

s of bosons where bosons can be lost into environment but we postselect cases in which all bo

sons remain in the system. Photons in optical networks experience such non-unitary dynamic

s, as schematically described in Fig. (a). In particular, we focus on distinguishability of boson

s, which is related to the sampling complexity. Indeed, if bosons can be regarded as distinguis

hable particles, classical computers can sample their probability distribution efficiently.  

We show that the bosonic system exhibits a transition related to the distinguishability if t

he system has Parity and Time-reversal (PT) symmetry [2]. As we increase the strength of los

s effect γ, spontaneous breaking of PT symmetry occurs. In the PT symmetric phase, bosons

 are distinguishable only in the short-time regime due to the absence of quantum interference,

 which corresponds to the blue region in Fig.(b). On the other hand, in the PT broken phase, b

osons become distinguishable not only in the short-time regime but also in the long-time regi

me, where the latter corresponds to the green region in Fig. (b). In addition, the region where 

bosons are distinguishable with s

mall t is enlarged by the PT sym

metry breaking. This distinguish

ability transition is similar to tra

nsitions of entanglement from th

e volume-law phase to the area-l

aw phase in monitored quantum 

circuits [3], where classical algor

ithms based on matrix product st

ates can easily simulate dynamic

s in the area-law phase. In parall

el, sampling the distribution of 

bosons is classically easy in th

e PT broken phase, regarding o

ur bosonic system.  

 

[1] S. Aaronson and A. Arkhipov, Theory of Computing 9, 143 (2013). 

[2] K. Mochizuki and R. Hamazaki, Phys. Rev. Res. 5, 013177 (2023). 

[3] B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9, 031009 (2019). 

Figure. (a) Schematic picture for non-unitary dynamics of photons in optic

al networks. (b) Schematic phase diagram of the distinguishability transitio

n in the PT symmetric system. 
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Repeated projective measurements in unitary circuits can lead to an entanglement phase
transition as the measurement rate is tuned. In this work, we consider a different setting
in which the projective measurements are replaced by dynamically chosen unitary gates
that minimize the entanglement. This can be seen as a one-dimensional unitary circuit
game in which two players get to place unitary gates on randomly assigned bonds at
different rates: The “entangler” applies a random local unitary gate with the aim of
generating extensive (volume law) entanglement. The “disentangler”, based on limited
knowledge about the state, chooses a unitary gate to reduce the entanglement entropy
on the assigned bond with the goal of limiting to only finite (area law) entanglement.
In order to elucidate the resulting entanglement dynamics, we consider three different
scenarios: (i) a classical discrete height model, (ii) a Clifford circuit, and (iii) a general
U(4) unitary circuit. We find that both the classical and Clifford circuit models exhibit
phase transitions as a function of the rate that the disentangler places a gate, which have
similar properties that can be understood through a connection to the stochastic Fredkin
chain. In contrast, the entangler always wins when using Haar random unitary gates and
we observe extensive, volume law entanglement for all non-zero rates of entangling.

[1] R. Morral-Yepes, A. Smith, S. L. Sondhi, and F. Pollmann, Entanglement Transitions in
Unitary Circuit Games (2023), arXiv:2304.12965.
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Dynamical Quantum State Reduction models 
via 

Spontaneous Unitarity Violation 
 

Spontaneous unitarity violations, a form of spontaneous symmetry breaking, were recently 
proposed as a cause of objective quantum state reduction.  In this poster, we formalise the 
description of unitarity violations, and show that they generically imply models of dynamical 
quantum state reduction (DQSR) driven by colored noise. We present a formalism for exploring 
such models as well as a prescription for enforcing explicit norm-preservation, and we show that 
the resulting pure state dynamics is described by a modified von-Neumann Liouville equation 
which in a particular limit reduces to the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) 
master equations. We additionally show adherence to Born's rule emerging in the same limit 
from a physical constraint relating fluctuating and dissipating components of the model. 
Connections between various topics such as non-equilibrium physics, competition between 
Unitary evolution and Born’s projection are drawn and discussed. 

 

Aritro Mukherjee 

PhD candidate 

University of Amsterdam 
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Measurement-induced criticality in a monitored circuit with
U(1) charge conservation

Hisanori Oshima1, and Yohei Fuji1

1(Presenting author underlined) Department of Applied Physics, University of Tokyo,
Tokyo 113-8656, Japan

The entanglement entropy shows a phase transition from a volume-law phase to an area-
law phase, called measurement-induced entanglement transition, when a pure quantum
state evolved under unitary dynamics is subject to local projective measurements. It is in-
tensively studied due to emergence of conformal invariance at the phase transition, which
is rarely found in non-equilibrium systems. In this talk, I will discuss critical phenomena in
unitary-projective hybrid quantum circuits with U(1) symmetry (charge conservation)[1].
Numerical results show that, in addition to the conventional entanglement transition, a
new transition obeying the Tomonaga-Luttinger liquid theory appears. The latter tran-
sition is characterized by critical behaviors in steady-state values of a subsystem charge
fluctuation[2], a charge correlator, and the entanglement resolved by conserved charges[3].
I also show that a correlator of subsystem charges can be used to locate this new transition
point.

Figure 1: (a) Steady-state value of the bipartite charge-fluctuation FA as a function of
the subsystem size |A| for measurement probabilities p ∈ [0.0, 0.3]. (b) Steady-state value
of the subsystem-charge correlation function ⟨nAnC⟩c as a function of p. The inset shows
scaling collapse of it.

[1] H. Oshima, Y. Fuji, Phys. Rev. B. 107, 014308 (2023).
[2] H. Francis Song, et. al., Phys. Rev. B. 85, 035409 (2012).
[3] J. C. Xavier, F. C. Alcaraz, and G. Sierra, Phys. Rev. B. 98, 041106 (2018).
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Symmetry-protected topological order and cluster states in
open quantum systems

Dawid Paszko, Dominic C. Rose, Marzena Szymańska, Arijeet Pal

(Presenting author underlined) Department of Physics and Astronomy, University
College London, Gower Street, London WC1E 6BT, United Kingdom

Topological order offers possibilities for storing and manipulating quantum information.
Its behaviour in out-of-equilibrium settings has recently become of particular interest be-
cause, although susceptible to destroy any order, these are of high experimental relevance.
In this work, we demonstrate the ramifications of weak and strong symmetries [1] on the
symmetry-protected topological (SPT) phases in open systems. The general principles
are illustrated concretely with the archetypal one-dimensional cluster model [2], initially
introduced as a platform for measurement-based quantum computation [3].
First, working with the Lindblad master equation [4, 5], we show that the model displays,
as a consequence of strong symmetries, two many-body logical qubits in its steady state,
characterized by a finite dissipative gap in the thermodynamic limit and metastable un-
der a class of perturbations. We relate these latter properties to the fragmentation of the
state space of the problem due to weak symmetries. Second, we also explore the effects
of weak symmetries on the dynamics of the model, which are visible in quantum trajecto-
ries [6]. We thus find a broad class of dissipation channels that preserve the cluster nature
of the states, and hence their SPT features. As a consequence, we show how to recover
information stored in edge modes by monitoring quantum jumps in only a small part of
the spin chain.
This work thus proposes a new framework to study the effect of symmetries on SPT phases
in open quantum systems, and using concrete examples, proves it to be useful whether
to engineer dissipation for desired properties or to study their robustness against generic
sources of decoherence.

[1] V. V. Albert, L. Jiang, Phys. Rev. A 89, 022118 (2014).
[2] F. Pollmann, A. M. Turner, E. Berg, M. Oshikawa, Phys. Rev. B 81, 064439 (2010).
[3] R. Raussendorf and D. E. Browne, H. J. Briegel, Phys. Rev. A 68, 022312 (2003).
[4] V. Gorini, A. Kossakowski, E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).
[5] G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
[6] A. J. Daley, Advances in Physics 63, 77 (2014).
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Multipartite Entanglement in the Measurement-Induced Phase
Transition of the Quantum Ising Chain

Alessio Paviglianiti and Alessandro Silva

International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste,
Italy

External monitoring of quantum many-body systems can give rise to a measurement-
induced phase transition characterized by a change in behavior of the entanglement en-
tropy from an area law to an unbounded growth. We show that this transition extends
beyond bipartite correlations to multipartite entanglement. Using the quantum Fisher
information, we investigate the entanglement dynamics of a continuously monitored quan-
tum Ising chain. Multipartite entanglement exhibits the same phase boundaries observed
for the entropy in the post-selected no-click trajectory. Instead, quantum jumps give rise
to a more complex behavior that still features the transition, but adds the possibility of
having a third phase with logarithmic entropy but bounded multipartiteness.
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Stability of Nishimori cat states and non-equilibrium
entanglement transitions

Malte Pütz, Guo-Yi Zhu, and Simon Trebst

(Presenting author underlined) Institute for Theoretical Physics, University of Cologne,
Zülpicher Straße 77, 50937 Cologne, Germany

Shallow quantum circuits that combine unitary gates with non-unitary measurements,
so-called monitored quantum circuits, can create long-range entanglement (LRE) in O(1)
steps — substantially faster than local unitary circuits, where entanglement creation is
bounded by an information lightcone (Lieb-Robinson bounds). An open question is the
stability of such engineered LRE when the circuit itself exhibits imperfections (such as
incomplete gate operations or shifted measurements). Here we build on recent work from
our group discuss the preparation of “Nishimori cat” states [1], which exhibit a robustness
to such imperfections, and explore extensions to imperfect lattice geometries (interpolating
between one and two spatial dimensions) and Gaussian coherent noise. We characterize
the post-measurement quantum wavefunction by various entanglement quantities and
show exotic quantum criticality induced by the inclusion of such circuit imperfections. Our
work employs state-of-the-art numerical simulation techniques, including hybrid Monte
Carlo / tensor network calculations.

[1] Guo-Yi Zhu, Nathanan Tantivasadakarn, Ashvin Vishwanath, Simon Trebst and Ruben
Verresen, arXiv:2208.11136.
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Abstract for a workshop on Dynamics of Monitored Quantum
Many-Body Systems — (smr 3868)

Ritu Nehra1, Alessandro Romito2, and Dganit Meidan1

1Department of Physics, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
2 Department of Physics, Lanchaster University, Lancaster LA1 4YB, United Kingdom

The dynamics of entanglement under measurement in many-body quantum systems
is a topic under intensive study recently. The generic unitary dynamics give rise to
the thermalization in the system due to a highly entangled state, whereas continuous
monitoring of these states tends to destroy all the entanglements. The two competing
dynamics are responsible for the exciting phase transitions in the quantum systems, which
are studied with the help of the entanglement entropy scaling [1]. The experimental
probing of these measurements is independent of environmental feedback, which restricts
its applicability to a few open systems. In order to capture a large class of environments,
the measuring device is modeled as a continuous Gaussian probe in recent work [2] which
modify the detector state and use it as feedback to the systems. I will discuss the role
of the feedback control measurements in the context of topological phase transitions of
the free Fermionic chains. I will discuss how the special measurement operations and
environment feedback induced the topology in such a simple system and scale with relative
measurement strengths.

[1] Graham Kells, Dganit Meidan and Alessandro Romito, Topological transitions in weakly
monitored free Fermions, SciPostPhys.14.3.031, 2023.

[2] M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-
strength weak measurements, Phys. Rev. B 100, 064204, 2019.
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Resetting in the quantum dynamics of a particle in a
long-ranged tight-binding model and subject to repeated

measurements

Sayan Roy1, Shamik Gupta2, and Giovanna Morigi1

1 Theorestische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
2Department of Theoretical Physics, Tata Institute of Fundamental Research, 1 Homi

Bhabha Road, Mumbai, 400005, India

We analyze the dynamics of a quantum particle moving according to a long ranged
tight-binding Hamiltonian and which is additionally subject to repeated projective mea-
surements by a detector placed at the target site. We consider the case of measurements
being done both at regular and at random time intervals. In this setup, the ballistic prop-
agation of the particle is found to be constrained by the repeated measurement protocol,
which yields a detection probability less than 1. The detection probability is obtained
analytically by using a perturbation-theory approach in the sprit of [1]. To get advantage
of the ballistic propagation, we extend the model of [2] by resetting at a constant rate, and
find the optimal resetting rate required to maximize the detection probability. We finally
determine the dependence of the detection probability on the range of the interaction.

[1] S. Dhar, S. Dasgupta, A. Dhar, J. Phys. A Math. 48, 115304 (2015).
[2] R. Yin, E. Barkai, Phys. Rev. Lett. 130, 050802 (2023).
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Full counting statistics as probe of measurement-induced
transitions in the quantum Ising chain

Alessandro Santini
1

1SISSA, via Bonomea 265, 34136 Trieste, Italy⇤

Non-equilibrium dynamics of many-body quantum systems under the effect of measure-

ment protocols is attracting an increasing amount of attention. It has been recently revealed

that measurements may induce different non-equilibrium regimes and an abrupt change in

the scaling-law of the bipartite entanglement entropy. However, our understanding of how

these regimes appear, how they affect the statistics of local quantities and, finally whether

they survive in the thermodynamic limit, is much less established. Here we investigate

measurement-induced phase transitions in the Quantum Ising chain coupled to a monit-

oring environment. In particular we show that local projective measurements induce a

quantitative modification of the out-of-equilibrium probability distribution function of the

local magnetization. Starting from a GHZ state, the relaxation of the paramagnetic and the

ferromagnetic order is analysed. In particular we describe how the probability distribution

of the former shows different behaviour in the area-law and volume-law regimes.

⇤ asantini@sissa.it
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Symmetry-enriched measurement-only quantum circuits
on a Kitaev honeycomb lattice

Daniel Simm, Guo-Yi Zhu, and Simon Trebst

Institute for Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937
Cologne, Germany

Quantum circuits offer unprecedented dynamical control of many-body entanglement, at-
tracting significant attention from quantum information theorists and many-body physi-
cists alike. Even in circuits that are built exclusively from measurements, long-range
entanglement can be created through the competition of different, non-commuting mea-
surement operators as shown in a wide variety of models. Previous work, however, pri-
marily focused on measurement-only circuit dynamics with little to no structure. Here we
investigate such symmetry-enriched quantum circuits derived from the Kitaev honeycomb
model [1, 2, 3] with distinct structures in space and time and characterize the emerging,
dynamically created quantum states by their entanglement structure. In doing so, we
also study the analytical tractability of random Clifford circuits and discuss a possible
computational complexity transition.

[1] Lavasani et al., arXiv:2207.02877 (2022).
[2] Sriram et al., arXiv:2207.07096 (2022).
[3] Zhu et al., arXiv:2303.17627 (2023).

P32



Entanglement dynamics of free fermions subjected to monitored
loss and gain

Elias Starchl1 and Lukas M. Sieberer1

1 Institute for Theoretical Physics, University of Innsbruck

Continuous or repeated projective measurements of site occupation numbers can strongly
suppress the creation of entanglement through the unitary dynamics of free fermions hop-
ping along a one-dimensional lattice. This behavior can be understood intuitively in the
limit of high measurement rates, where each quantum trajectory, describing the dynamics
of the system conditional on a sequence of measurement results, is frozen in a disentangled
product state of occupied and empty sites due to the quantum Zeno effect [1]. However,
by studying the entanglement dynamics of free fermions subjected to monitored loss and
gain, we show that such a freezing of the dynamics is not required to induce a reduction
from volume-law to area-law entanglement. Instead, an area-law phase can also emerge
from increasingly fast fluctuations of local occupation numbers. Interestingly, while the
dynamics induced by measurements of local occupation numbers and monitored loss and
gain are strikingly different, we find that in both cases static measures of entanglement
indicate a Kosterlitz-Thouless transition between a critical and an area-law phase. Our
results shed light on the role of particle number conservation for the occurrence of entan-
glement transitions in free fermionic systems.

[1] O. Alberton, M. Buchhold, and S. Diehl, Phys. Rev. Lett. 126, 170602 (2021).
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Diagrammatic method for many-body non-Markovian
dynamics: memory effects and entanglement transitions

Giuliano Chiriacò1,2,3, Mikheil Tsitsishvili2,3, Dario Poletti4,5,2,6, Rosario Fazio2,7, and
Marcello Dalmonte2,3

1Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, 95123
Catania, Italy

2 The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada
Costiera 11, 34151 Trieste, Italy

3 SISSA — International School of Advanced Studies, via Bonomea 265, 34136 Trieste,
Italy

4 Science, Mathematics and Technology Cluster, Singapore University of Technology and
Design, 8 Somapah Road, 487372 Singapore

5 Engineering Product Development Pillar, Singapore University of Technology and
Design, 8 Somapah Road, 487372 Singapore

6 Centre for Quantum Technologies, National University of Singapore 117543, Singapore
6 Dipartimento di Fisica, Università di Napoli “Federico II”, Monte S. Angelo, I-80126

Napoli, Italy

We study the quantum dynamics of a many-body system subject to coherent evolution and
coupled to a non-Markovian bath. We propose a technique to unravel the non-Markovian
dynamics in terms of quantum jumps, a connection that was so far only understood for
single-body systems. We develop a systematic method to calculate the probability of a
quantum trajectory, and formulate it in a diagrammatic structure. We find that non-
Markovianity renormalizes the probability of realizing a quantum trajectory, and that
memory effects can be interpreted as a perturbation on top of the Markovian dynamics.
We show that the diagrammatic structure is akin to that of a Dyson equation, and that the
probability of the trajectories can be calculated analytically. We then apply our results
to study the measurement-induced entanglement transition in random unitary circuits.
We find that non-Markovianity does not significantly shift the transition, but stabilizes
the volume law phase of the entanglement by shielding it from transient strong dissipation.

[1] Giuliano Chiriacò and Mikheil Tsitsishvili and Dario Poletti and Rosario Fazio and Marcello
Dalmonte, arxiv: 2302.10563 (2023).
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1 International School for Advanced Studies (SISSA), via Bonomea 265,
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3 Department of Physics, Technical University of Munich, 85748 Garching,

Germany
4 Munich Center for Quantum Science and Technology (MCQST),

Schellingstr. 4, 80799 München, Germany

We study dynamical phase transitions occurring in the stationary state of the dynamics
of integrable many-body non-hermitian Hamiltonians, which can be either realized as a
no-click limit of a stochastic Schrödinger equation or using spacetime duality of quan-
tum circuits. In two specific models, the Transverse Field Ising Chain and the Long
Range Kitaev Chain, we observe that the entanglement phase transitions occurring in
the stationary state have the same nature as that occurring in the vacuum of the non-
hermitian Hamiltonian: bounded entanglement entropy when the imaginary part of the
quasi-particle spectrum is gapped and a logarithmic growth for gapless imaginary spec-
trum. This observation suggests the possibility to generalize the area-law theorem to
non-Hermitian Hamiltonians.

[1] C. Zerba, A. Silva, arXiv:2301.07383
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Non-Hermitian Generalization of Rényi Entropy
in Monitored Quantum Systems

Chao Zheng

Department of Physics, College of Science, North China University of Technology

Different concepts and definitions of entropy take key roles in a variety of areas, which can
be applied to both classical and quantum systems. Among them is the Rényi entropy, and
it is able to characterize various properties of classical information with a unified concise
form. However, the conventional Rényi entropy can directly be applied to Hermitian
systems only because of the requirement of normalized density matrices. For a non-
Hermitian system, the evolved density matrix may not be normalized, the conventional
Rényi entropy in not well-defined for non-Hermitian system, including monitored quantum
systems [1, 2, 3]. In this talk, we will introduce our recent work [4] that how to describe
the Rényi entropy for non-Hermitian systems more appropriately. We obtain a concisely
and generalized form of α-Rényi entropy, and we extend the order-α from finite positive
real numbers to zero and infinity. Our generalized non-Hermitian α-Rényi entropy can
be directly calculated using both of the normalized and non-normalized density matrices.
We look forward to the applications of our generalized Rényi entropy to describe entropy
dynamics of monitored quantum systems.

[1] Y. Li, X. Chen, Matthew P. A. Fisher, Phys. Rev. B 98, 205136 (2018).
[2] B. Skinner, J. Ruhman, A. Nahum, Physical Review X 9, 031009 (2019).
[3] Beni Yoshida, arXiv:2109.08691 [quant-ph] (2021).
[4] D. Li, Chao Zheng, Entropy 24, 1563 (2022).
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