Extreme events in deterministic dynamics
with application to rogue waves

Giovanni Dematteis
(with Tobias Grafke, Miguel Onorato, and Eric Vanden-Eijnden)

ICTP School/Workshop'on Wave Dynamics:
Turbulent vs Integrable Effects

Trieste, Aug 28, 2023



Outline

 |ntroduction

» Large Deviation Theory: fundamentals
 Computation of instantons in wave systems
* Experimental instantons in a wave flume
 Rogue waves in a real ocean?

» Outlook: future directions and applications



Outline

* Introduction

» Large Deviation Theory: fundamentals
 Computation of instantons in wave systems
* Experimental instantons in a wave flume
 Rogue waves in a real ocean?

» Outlook: future directions and applications



What are rogue waves”?

Photograph of the Stolt Surf tanker as it met a
rogue wave in 1977. The tanker deck, that
was submerged, is 25 m above sea level

(from the New York Times).



only anecdotal evidence until a few decades ago
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The Great Wave off Kanagawa, Katsushika Hokusai (c. 1830)



In history

(A chronology of freak wave encounters. PC Liu - Geofizika, 2007)

Starting from “mythological” accounts about Columbus'
fleet and Henry Vlll's favourite ship Mary Rose which
sank on July 19, 1545 (possibly due to a rogue wave
and a sudden breeze causing her to capsize), there
are tens of documented episodes

Until recently often dismissed as seafarer lore




Rogue Waves

Definition: r-
Waves whose height from crest to :
trough exceeds twice the significant

wave height H_

(4 times the standard deviation of
the surface elevation)

Unpredictable and dangerous:
represent a serious threat to boats

and naval structures Photo by M. Onorato, Southern Ocean. July 3, 2017
January 11995 at 15:20, hs = 11.9m 2006-2010: 78 rogue waves (all with
- 20 T .
£ 6 | either damage or human losses).
% 12 | Nikolkina, | Didenkulova, nat. hazards earth.
s 8 : i syst. sci. (2011)
f ;'i}\‘/\vr '&w'\ M uh "‘%"‘Q\
f P
“180 200 220 20 260 200 %00 320 0 %0 300 MeChanis_ms of emergence.
Time (s) Two plausible scenarios have emerged

. : over the years, linear superposition
Time series of the Draupner wave, recorded . .
in the North Sea (Jan 1, 1995) and nonlinear focusing



Two limiting theories for extreme waves

Linear (dispersive) theory Semi-classical theory of NLS
“Quasi-determinism” for « Benjamin-Feir modulational
Random Gaussian fields: instability: Onorato, Chabchoub,
Lindgren ('70s), Boccotti ('80s) etc. (2000's on)
Larger waves have the shape of e Theorem in Bertola & Tovbis,
the covariance of the wave field CPAM 66.5 (2013): large bumps

_ - tend nonlinearly to a local
Gaussian PDF tails: about 1/3000 Peregrine soliton

waves is ‘rogue”

 Non-gaussianity and increased
probability of tail events

Comparing some of the available rogue wave records, from

Benetazzo A. et al., Scientific Reports 7.1 (2017). 8276. _ _ _
Peregrine soliton evolution



Looking for suitable theory

* Intrinsic randomness: need for a statistical approach

* incorporate the effective dynamics (e.g. dispersive vs
nonlinear effects)

* Must be suitable for the description of events in the
distribution tails, beyond the Central Limit Theorem
descripton



Large Deviation Theory (LDT)

@ Cramer (pioneering results, ‘30s).
Varadhan, Gartner, Ellis, etc. (for-
malization, from the '60s on)

@ Branch of probability theory that
deals with the exponential decay
of the probability of the tail events
(rare/extreme events) — while the
central limit theorem concerns
typical events

@ Motto: rare events are predictable in that they occur with high
probability by the least unlikely scenario for them to happen

@ Rate function: estimate of the
probability of the tail events by
knowledge of the most likely con-
ditional realizations: INSTANTONS
deterministic optimization prob-
lem tractable in high dimensions




Some notable applications

o Statistical mechanics

The entire theory can be naturally
formalized in terms of LDT

Touchette U, The large deviation
approach to statistical mechanics,
Phys. Rep. 2009

» Turbulence “‘multifractality”

Frisch U, and Parisi G, Fully
developed turbulence and
intermittency, 1980

Benzi R, and Vulpiani A,
Multifractal approach to fully
developed turbulence, 2022

« Stochastic processes

Freidlin-Wentzell LDT for
stochastic differential equations in
the limit of small noise

Freidlin MI, and Wentzell AD,
Random perturbations of
dynamical systems, Springer 1998
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Central Limit Theorem (CLT)

N
Sv=">_ Xp with X;iid RVs: E(Xp)=p, var(Xy)=o"

Sn_NM
v No

Define observable: Z, =

CLT: Zy 3 Z~N(0,1), asN — o
Sketch of proof.  Characteristic function:

QPZN(T EeltZN H Ee

[MacLaurinexp. as N > 1] = H(1 + 5+ O(N "))~ (e W)V =g

Characteristic function of A/(0, 1)

Whel'e Yn — Xn;’u, E( Yn) — 0, Val‘( Yn) — 1




Comments on CLT

@ If X, Gaussian RV = CLT is exact (all moments in
higher-order terms are vanishing)

@ In general, expansion good up to O(1) fluctuation of Yj,
i.e. O(v/'No) fluctuation of Sy (1 std)

@ Try to evaluate e.g. P(Sy > Nu + No), fluctuations from
the mean much larger than the 1std typical fluctuation.
CLT provides NO ANSWER!

@ Firstresultin LDT was born to answer specifically this
question: Cramér’s Theorem



Crameér Theorem

: SN dP(Z)
i —_—— > — o
Define P(z) :=P( N M2 Z) [1 — CDF, PDF o ]
g . .
z ~ —— typical fluctuation (CLT
7 OP (CLT)
Cramér Theorem: P(z) = e~ M2
I(z) = sup(Az — S(A)) [/(z) : rate function]
A
where S(A) (= Nlim 1N log Ee™°N [scaled cumulant generating function]
. log fn .
Here, fv <gn< Ilim =1 [log —equivalence]

N—oo log gn
Given the measure of X, the procedure is:
@ Calculate S(\) from definition
@ Calculate /(z) from Legendre transform of S(A)

@ obtain LDT approximation of P(z), for all values of z also in the tail, i.e.
leading exponential decay, up to power-law correction not seen by “<”



Large Deviation Principle

Assume we already know tail distribution: f(z) < e~ "'?)

AZ _
GNSO) _ gNlogEer _ p NAz | / o2 o= NI(Z)

Nsup,(Az—1(2))

~ e as N > 1 [Laplace method]

= S(A\) = sup(Az — I(2)) [Legendre transform]

If S(\) exists, then it is convex. Legendre transform can be inverted to obtain:
I(z) = sup(Az—S())), P(z) < e V¥ as N> 1 [Large Deviation Principle (LDP)]
A

Theorems to prove the existence of an LDP:

@ Gartner-Ellis: Given S()\), guarantees that /(z) exists
@ Varadhan: Given /(z), guarantees that S()\) exists

@ Contraction Principle: Given /(z) with an LDP for Z, guarantees the
existence of LDP for Y = g(z) with rate function I'(y) = inf,.,—g4(z) I(2)



I(%) 4’\

Dominating point “LDP”

Assume we already know tail distribution: f(z) < e™"®),  for large z

Az .
oSO _ glogBe _ p oz fe)‘ze 12) 4y

o @UREPZNZ)  gg ¥ B [Laplace method]

= S(A\) = sup(Az — /(2)) [Legendre transform]

If S(\) exists, then it is convex. Legendre transform can be inverted to obtain:
I(z) = sup(Az—S())), P(z) < e " asz>>1 [Large Deviation Principle (LDP)]
A

* “Dominating-point” regime starts for
“large-enough” z

* In the tail, same rate function as large
N LDP, but different limit: no uniform
convergence for any z

Works of Ney, lltis and others ('80s and

'90s)
[:N =] DG, Grafke T, and Vanden-Eijnden E,
(5 R SIAM/ASA Journal of Uncertainty

M /u;o' 2 Quantification, 2019
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LDT for deterministic dynamics
with random initial data

@ Field u with deterministic evolution equation d:u = b(u)
@ Random initial condition:

Up Wwith measure dpu(up) o exp(—1(Up))dug, Uy € Q C RN

@ “Observable” function on field at final time T: f(u(T)). Being the evo-
lution deterministic, will depend on the initial field via Fr(uy) = f(u(T))
(deterministic mapping, in general nonlinear and very complicated!)

Consider the tail distribution of Fr(up) (e.g. can estimate via
Monte-Carlo)

P(z)=P(f(u(T)) > z) =P(Fr(u) > z), forlarge z

Define the rate function

l(uz(2)) = fn;(uzr} I(Up), Qz)={up € Q2: Fr(lup) > z}

Can prove (Theorem (LDP)): P(z) < exp(—1(u§(2)))

Note: will use 8 or u, indistinctly for the initial conditions




In practice: constrained optimization

high-dimensional constrained minimization to find uj(z)
@ Equivalent to the unconstrained minimization of the cost function

erpel?‘z Er(\ W), ErT=Ir(Uo) — A\F7(Up)

where )\ is a Lagrange multiplier used to implement the constraint
Fr(up) > z
@ Optimizer found by condition

VwEr =0= uz(N\) = uj(z), using X\2z): Fr(uz(N) =z

Note: we will call u,* the instanton of the problem, borrowing the terminology

from field theory (instanton = minimizer of action in path-integral formalism).
See also works by Falkovich and others in the '90s in the theory of turbulence



Schematic picture of the LDP
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Example: normal distribution with linear observable

21

@ (X.Y)~ e 2

@ Mapping F(0) =b-(x.y).
n*(z) = VI(0)

@ LDP: P(z2) =< exp(—%)

@ 0*(z) = zb,

, 0= (x,y) e R?,
b= (%, 3)
0+(z) = 2D

Wy A"
A \
N\ 7~
hAY -~
W i
\-‘ f
; e I W
. W 0(z) M\ S
‘ cd W AR
N Wy, XN
* \ A LT T
AN i \
Vi 10X

x24y?

Le. I(0) = X

Exact: P(z) ~ 1 exp(—%)

Variance of the
conditional event

F () > z decreases
(— 0as z— oc)inthe
direction parallel to
n*(2) :

o) = O(In*(2)["7)



Example: normal distribution with linear observable

2 2

® (X,Y)~ Lo F, 0=(x,y) R, ie.I(g) =2t
@ Mapping F(0)=b-(x,y), b= (%, 1

.
@ 0*(z)=2zb, n*(z)=VI0)|g.,=2b

@ LDP: P(z) = exp(—%)  Exact: P(z) ~ Lexp(-%)

Variance of the
conditional event

F () > z decreases
(— 0as z — o) in the
direction parallel to
n*(2) :

o) = O(ln*(2)|™")

* Probability concentration in parallel direction: LDP
 Degeneracy in perpendicular directions: sub-exponential prefactor



Wavefield w/ Gaussian independent Fourier modes, T=0

. L L . .
Wavefield envelope at t = 0:  wup : [_5’ 5] — C, relates to surface elevation n via:

i(koX)

no(Xx) = Up(x)e (first order of the Stokes series, sol. of Euler)

. 2T .
inAi o _ AT _en
Periodic domain: u(x) = Z 0e", k=
JEZ
Gaussian statistics: ;= g+ ib;, withi.i.d. RVs a;, bj ~ N(0, n))

n; is the wave spectrum, relating to the space covariance C(x) via:

C(r) = ( (x)u(x +r)) Z n, , under spatial homogeneity
JEL
Probability exponent for LDT method:
18 +b

0={ab}  M0)=5"

Choose observable to define extreme wave:
F(6) = |up(x = 0)| (because of translational invariance, x=0 general)



Analytical optimization

ajz b2 EXN0) = 1(0) — AF(6)
19) = n VeEMN#) =0 = 6*())
F(6) = uo(x = 0) FON) =2=Az)

0" (A\(2)) = u5(2)
Compare with Boccotti-Lindgren linear theory:

Shape of extreme waves: covariance / Gaussian tail decay

Fun exercise: Montecarlo + post-processing (select maxima of

size larger than z, translate max in x=0, and study collapse
onto optimizer (instanton))

std"2




Introduce a dynamics

 Deep water, unidirectional spectrum, narrow-
band around K

* Governing dynamics reduces to 1D Nonlinear
Schroedinger Equation (NLS)

Zakharov, J. Appl. Mech. Theor. Phys. (1968)

, 1
/ (atu = Cgaxu) — %(ﬁu = EWOkg‘UFU —0
0

dw
WO:\/gk, Cg:m



Linear case

* Moving reference frame
« Small amplitude field

e uand x in units of 8%k "and t in units of w,"

i (9 + CyP50) f’%aiu—%@: 0

Oru = —id=u

Now modes DO NOT INTERACT, preserving Gaussian statistics
Optimization at time T = Optimization at time 0




Instanton evolution, linear case

* Consider a large box
* Gaussian-shaped spectrum for simplicity
» Look for max at T=0: u,*(z) given by covariance

* Use free-particle kernel, find instanton evolution

L>1 = 2—”2—>/dk nkoce%;s@:e—zoxff_mz
L F R C(0)
T / / / / 1 _,-(X—X/)2
u(x,t):/ dx u(x,0)K(x,t;x,0), K(x,t;x,0)= i _te 4t
— 00 —4a7l

2
. o X
Initial condition:  u(x,0) = ze'¥e 20x(t=0°




Instanton and Uncertainty Principle

. 0'2 _l X2 5 _ itX
U(X t) — 7 e’%p X e 20)2(4—41‘20; e J§+41‘2
’ oc — 2jt
X

@f=0: uU—UWw

o [ox(t)] = \/0? + 48202
min at t = 0 (maximal focusing), symmetricw.rt. t =0

@ |ox(t) Zox=1/ok = |ox(t)lokx =1,
= 1 for the instanton at the point of maximal focusing

Instanton saturates the bound of the Uncertainty
Principle at the maximal focusing point

(not physically possible to focus a wave packet further)



Nonlinear case:
Numerical optimization by gradient descent

@ Now use a nonlinear dynamics: Fr(ug) = f(u(T)) is very
complicated, need for a numerical method to perform the

optimization

@ Gradient descent in the cost-function landscape
Vi E = Vi l(Up) — AT (T, up)VF(U(T, tp)).

@ The Jacobian J(T, up) =V, u(T, Up) evolves according to
ord(t, ug) = Vb(u(t, up))J(t, ), J(t=0,up)=Id

@ Varying A, we span all the values taken by z and compute the op-
timizers u}(z) and the rate function /(uj(z)) by which we estimate

the probability tail for large z (LDP)



Instanton computation

NLS with periodic boundary conditions discretized on a grid of 2048 points
Spectrum of initial data parametrized by 93 Fourier modes: optimization in 185

dimensions

Solution evolved with pseudo-spectral exponential time differencing Runge Kutta of
second order (ETDRK2) scheme

Optimization through gradient descent with adaptive step (line search) and
preconditioning of the gradient

Instantons vs standard events,
l.e. evolution from optimized/typical initial condition

The only operation performed here is to take an initial condition from
optimization (left) or at random (right), and evolve the field
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Experimental setup: the wave flume

Wave maker

Artificial wave tanks are a great 7 270 m long wave flume (Marintek, Norway)
test bed to mimick realistic :
“rescaled” sea states
i
 Narrow-banded states: NLS
equation is the governing
equation at leading order:

Oxth + 2200 + ij—%af@b +2ikd|YPy =0  tel0,T]
| Y. complex envelope, relating to the real
R — et gurface elevation 7 via the Stokes series " 1
= ‘N s ¥ 0
Y Lt — s 1 = |v] cos(#) + $Ko|w|* cos(26) + ... S
g 45 [ty NN it s NN s é e
£ it Where 8 = koX — wot + ¢ (¢ is a phase) :
EL 27 Ao bt ) -
18 AN IR :
e SRR : w - er
P tme T Tme « \Wave generator enforcing random initial data with

Generation of a rogue wave in a
water tank and fit of the data using
NLS, assessing the validity of the
model. From Chabchoub et al,
Phys. Rev. X (2012)

Gaussian statistic and observational Jonswap spectrum

* Pick as observable: f(¢(L)) = max;cio, 17 |¢(L. 1)



Filtering of experimental extreme events

@ At fixed x along the flume, select events exceeding threshold z

@ Track the wave packet backward in space with group velocity ¢y = 5“'—}%
@ Collect extreme events (centered at t = 0) and their precursors

@ Compute the average extreme event and the standard deviation

0.2+ x=45m

—— Expernimental mean
014 Standard deviation

ERLE

—0.1 +

T
0.2 4 x=30kn
L 011
F 004
-1

024z =10m
o A

ERTE
0.1 -




Comparison: Experiment vs Instanton

quasi linear intermediate highly nonlinear

T T T T T T T T
—10 -5 0 5 10 —10 —5 0 5 10 —10 —5 0

Set ~v | Hs (m) €
quasi-linear 1 0.11 | 0.077
intermediate 33| 0.13 0.56

highly nonlinear | 6 0.15 1.11




Experiment vs Instanton: quasi-linear regime

Tending to the linear regime, the surface elevation is Gaussian.

@ Numerical method e quasi linear
converges to the = 45m o Iii?i’ll?li‘”
covariance, inverse £ 01 s Pt
Fourier transform of s N, e s
the spectrum i S TRl R
@ Analytical solution is " i
available: retrieving £
Lindgren-Boccotti =
result* stspas
@ Past/future  history T
found by evolving 5
backward/forward 5] 1o
the (NL) Schrédinger , [ —rT— .
equation ~10 5 0 5 10

t/s
* @G Lindgren. Local maxima of Gaussian fields. In: Arkiv for matematik 10.1-2 (1972), pp. 195-218;
P Boccotti. Wave mechanics for ocean engineering. Vol. 64. Elsevier (2000).



Experiment vs Instanton: highly-nonlinear regime

If nonlinearity is strong, approach the semi-classical regime of NLS

highly nonlinear

@ Any single localised 0.2
pulse on negligible
background leads to
emergence of Pere-
grine soliton' Lo

@ By scale invariance, this
can be attained if peaks
are large and focused
enough for nonlinearity
to rule over dispersion

@ Envelope locally (both in
space and time) con-
verges to the Peregrine

T = 45m Experiment

e nstanton

|t /m

0.1 - mm=  Peregrine

e Linear

T = 30m

] /m

" M Bertola and A Tovbis. Universality for the focusing nonlinear Schrédinger equation at the gradient
catastrophe point. CPAM 66.5 (2013), pp. 678-752.

A Tikan, et al. Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear
Schrédinger equation. PRL 119, 033901 (2017).



A unifying picture of rogue waves

[nstanton
Linear quasi linear intermediate highly nonlinear Peregrine

—ii] I 1 r I
0 20 40 60 80 0 20 40 60 B0 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

z/m z/m z/m z/m r/m

—10

Quasi-linear regime Highly-nonlinear regime
@ Linear length scale: @ Peregrine length scale:
Lin = w2 /(koAw?) Lper = v/LiinLni, Where
@ Wave packet ~ 9 m Lo = 8/(kyHs) is the modula-

@ Linear superposition domi- e e
nates @ Wave packet ~ 65 m

Instanton interpolates smoothly between the two regimes!
Intermediate regimes show mixed linear and nonlinear features which

are captured by the instanton
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Framework for the problem in deep sea

Framework shift to a stationary deep sea (for simplicity: still 1D,
narrow-banded, with observational JONSWAP spectrum)

No well-defined initial condition like in the flume! What to do?

Bayesian-like framework

@ Scale-separation assumption: spectrum is stationary on

time/length scales where NLS is the governing equation

@ Assume Gaussian statistics (and use this as prior) on the basis
of Wave Turbulence theory + max entropy distribution

@ Gaussian prior is inaccurate in the tail (like CLT valid only for
core of distribution), supplementing it with the dynamics we ap-
proach the invariant distribution: posterior (for now, conjecture)

@ Need for a posteriori consistency check

More challenging ground, but closer to the real interesting problem.
Conceptual change, but same optimization problem

- GD, T Grartke, & E Vanden-Eijnden. Rogue waves and large devia-
tions in deep sea. PNAS, 115(5), 855-860 (2018)



Slow spectral dynamics on large scales

B8 B e e 04w - & ¥

Thursday 14 - 1800

O e - s e
Snapshot of ECMWF prediction of a macroscopic state of the
Northern Atlantic Ocean surface — from the app Windy.com



Modified NLS (Dysthe)

1 ' 1 '
Oru + 583;21, + %E)ﬁu - 1_683“ + %\u\Zu
1

3 2 20 — 2 2 _
+2\u\ 8ggu+4u O 2\8$Hu\ =0

20 —
Dysthe KB (1979) Note on a modification to the nonlinear Schrédinger equation for
application to deep water waves. Proc R Soc Lond A 369:105-114. — 6.00
Stiassnie M (1984) Note on the modified nonlinear Schrédinger equation for deep
water waves. Wave motion 6:431-433. — 5.25
15

4.50
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3.00

Non-integrable. £ 10
Instantons qualitatively
similar to NLS but with :

asymmetry

2.25
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0.75

0.00
0 1000 2000 3000 4000

x/m



LDT estimate of the tails

@ Want to estimate P(maxyx (X, T)| > 2)

@ Prior inaccurate in the tail, with the dynamics we approach the
invariant distribution: can observe convergence to invariant
state after a transient in agreement with Peregrine time scale!

@ LDT estimate: great agreement with MC sampling, but gain in
efficiency: statistics of rare events dominated by single real-
izations: instantons

=51
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Consistency check: spectral invariance
during evolution
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Statistics in large space-time domains

@ Initial gaussian distribution tends to
the invariant distribution as the ob-
servation time increases
(prior — posterior).

@ This can be used to extend the
statistics of extremes to a wider
space-time domain, through a boxing
argument

P(max; e |U(t, X)| > 2)
~1—=[1-=P(|u| > 2)]N»,
dove Np = |D|/(AcTe)

I 1 L 1 1
i 5 L] i 3 9 10 11 12 13 14 13

Fixed-point statistics

10° e 1 1

Spatial max statistics

L1 - 1 1 _I 1 ] ]
10-1
1id
Trnl imw

1 — L

L
10 L

L

I




Accounting for entropic effect
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Nice interplay with statistics of extrema:
* LDT: provides the effective mechanism and likelihood

« Statistics of extrema: straightforward extension of results to
domains of arbitrary size
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Application to other wave equations

KdV past a step

(a) early state att=0.1 intermediate state at t = 0.2 final state of extreme value atx =0t = 0.5
—— MC mean —— MC mean
MC std MC std
2l o IBT | et T

u(x,t)

- 1 1 _1 L L L L

L -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X

Qi, Di, and Eric Vanden-Eijnden. "Anomalous statistics and

large deviations of turbulent water waves past a step." AIP
Advances 12.2 (2022).

Shallow water equations for tsunami prediction

Time-opt, A =12

Time-opt, A =24

Time-opt, A =36

Time-opt, A = 48

Tong, S., Vanden-Eijnden, E., & Stadler, G. (2021). Extreme

-------- y-reg, A=12 ———-y-reg A=24 oo y-reg, A =36 —— = y-rEg, A =48
25 event probability estimation using PDE-constrained
P e optimization and large deviation theory, with application to
_ 4 = - tsunamis. Communications in Applied Mathematics and
E 2 e pe 20 g Computational Science, 16(2), 181-225.
< T =
) — - - 15 %'
e = - 3
E 3 - T w0 §
= = = - — = = . “ ”
= s —-— 3 & Extension of “LDP” for extreme events
o 4 .= e — .
[ — 1° to include second-order prefactor
£ correction
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Extending to 2 dimensions (linear)
(from MS thesis by Alessandro Falchi)
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2D linear case

Straightforward generalization
of the 1D case: again same
result as Lindgren-Boccotti
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Instantons in a 2D nonlinear evolution? to be done (see works by
Fedele extending quasi-determinism to nonlinear bound modes)



Generalize to random parameters / adjoint method

Now the dynamics itself

E(u,0) =1(0) — \f(u(T))). can depend on random
Opu = b(u,0), | u(t=0)=up(¥). parameters, not only ICs
T
VoE(u(T,0),0) = Vol —NJT(T,0)0,f(u(T,8)) VoE = Vol — (Voug) 'p(0,6) — / (Dgb) " p dt
0
O J = O,b J + Ogb, J(0) = Vg ug. Op = —(O.U_E'J)Tj.). p(T.0) = Aoy f(u(T,0)).

Direct method Adjoint method

* J evolution: dim(u) x dim(9) e p evolution: dim(u) !!

All technical details in: GD et al. 2019 and Tong et al. 2021

Random parameters in the dynamics: e.g. variable-depth wave propagation in coastal waters?
Optimal bathymetry for rogue wave formation?

E_.. @) Picture from
Li Y and Chabchoub A (2023).
1 | M | \ | | NN\ W | On the formation of coastal rogue waves in
{ water of variable depth. Cambridge Prisms:
Coastal Futures, 1, e33, 1-7
7 (®) see also e.g.
& Majda AJ, Mocre MN, Qi D. Statistical dynamical model to
‘% J * H—st—X. N, < predict extreme events and anomalous features in shallow
+ ~ water waves with abrupt depth change. Proceedings of the
—» National Academy of Sciences. 2019 Mar 5;116(10):3982-7.




Applicati
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Suret, P., Koussaifi, R., Tikan, A. et al. Single-sh 11 ] i ;
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turbulence using time microscopy. Nat Commun 7, ‘ Op‘“cal rogue Waves |n

13136 (2016)
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Fig. 6: Local temperature increase induced by extreme waves. Pierangeli, D., Perini, G., Palmieri, V. et al. Extreme
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transport of light in spheroids of tumor cells. Nat
Commun 14, 4662 (2023)
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quantification in dynamical systems with random
components. SIAM/ASA Journal on Uncertainty
Quantification. 2019;7(3):1029-59.

0

2

nonlinear fiber optics.
NLS governing dynamics

Optical rogue waves

studied as potential
treatment. Tumor cells
iluminated by randomly
modulated laser beams.
Need for control of energy
delivered by focused beams:
Could be posed as
optimization problem?

Instantons and LDP

shown to be highly relevant.
Promising application

not really exploited so far



Rigorous LDP

Communications on .
PURE AND APPLIED MATHEMATICS

RESEARCH ARTICLE

Large deviations principle for the cubic NLS equation

Miguel Angel Garrido, Ricardo Grande i, Kristin M. Kurianski, Gigliola Staffilani

First published: 21 July 2023 | https://doi.org/10.1002/cpa.22131

Theorem 1.1 (Large Deviation Principle). Consider the NLS equation on the circle T = [0, 27]:
(1.9) O A EQ‘UPUikm
u(07 55‘) = ZkEZ CrNke

with initial data as in (1.8). Consider the probability of seeing a large wave of height z(g) :=
206 Y2 > 0 at time t > 0 and fized z9 > 0. If t < e7! we have that

2
z

1.10 lim ¢ logP (sup u(t,z)| > 2o 51/2) =— LA
( ) e—07t mET| ( )‘ Zkez C%»

Theorem 1.9. Consider the set U(e) given by (1.12)-(1.13). Then U(e) satisfies the same LDP,
(1.10), as the set of rogue waves (1.11). Moreover, U(e) is almost entirely contained in the set
D(t, e g). More precisely,

(1.14) log P (U(E) — D, zge Y2 — 5)) < —exp(ce1/2) ase— 0%,

(small nonlinearity regime)

Rigorous LDP with
“speed” given by smallness

parameter ¢
(proof uses Gartner-Ellis)

“All extreme waves larger
than z look like the optimizer
(instanton)”



Thank you for your attention!
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