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EULER EQUATION IN THE CHANNEL

e Domain: two-dimensional finite channel R x [—1,1];
Stationary Euler equation in vorticity-stream function formulation

{1/}’ A¢} = wx(Aw)y - ¢y(Aw)x =0; (]-)

e Impermeability condition at the boundary: 1, = 0 on {y = +1};
o Velocity field: (u(x,y),v(x,y)) := Vi¢(x,y) = (Oyh(x,y), —0xh(x,y)).

INFORMAL THEOREM

Let kg € N. There exist eg > 0 small enough and a family of stationary solutions
(Ve(x,y) = wvs(x,y)|x=gx)a€[0,80] of the Euler equation (1) in the finite channel
(x,¥) € R x [—1,1] that are quasi-periodic in the horizontal direction x € R for
some frequency vector @ € R"®, with x = ox € T"°. Such family bifurcates from a
shear equilibrium 1, (y) and can be chosen to be arbitrarily close to the Couette

flow teou(y) == 3y? in H,fH;/zf('IF’“0 x [—1,1]), with s > O sufficiently large.
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THE HYDRODYNAMICS (IN)STABILITY PROBLEM

FIGURE: Kelvin-Helmholtz instability for two layered shear flows (credits: Lawrence et
at. (1991) - Cushman-Roisin (2005))
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LITERATURE OVERVIEW: INVISCID DYNAMICS
AROUND SHEAR FLOWS

e Linear and nonlinear damping for Vlasov-Poisson [Mouhot & Villani
(2011)]

e Linear inviscid damping for Euler close to Couette [Kelvin (1887), Orr
(1907), Lin & Zeng (2011)];

e Nonlinear inviscid damping [Bedrossian & Masmoudi (2015), Deng &
Masmoudi (2018), lonescu & Jia (2020)];

o Stratified fluids with flows close to Couette [Yang & Lin (2018),
Bianchini, Coti-Zelati & Dolce (2020)];

o Compressible fluids [Antonelli, Dolce & Marcati (2021)];
e Linear inviscid damping for other shear flows [Zillinger (2017)];

e Oscillatory stationary flows [Li & Lin (2011), Lin & Zeng (2011),
Coti-Zelati, Elgindi & Widmayer (2020)].
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LITERATURE OVERVIEW: QUASI-PERIODIC FLOWS

e Time quasi-periodic solution in fluid dynamics
» 2D water waves equation [Berti & Montalto (2017), Baldi, Berti, Haus &
Montalto (2018), Berti, F. & Maspero (2020,2021), Feola & Giuliani (2020)];
» Vortex patches in active scalar equations [Berti, Hassainia & Masmoudi
(2022), Hmidi & Roulley (2021), Hassainia, Hmidi & Masmoudi (2021),
Hassainia & Roulley (2022), Hassainia, Hmidi & Roulley (2023), Roulley
(2022), Garcia, Hassainia & Roulley (2023), Gémez-Serrano, lonescu & Park
(2023)];
» Forced Euler and Navier-Stokes [Baldi & Montalto (2021), Montalto (2021),
F. & Montalto (2022)];
> Non-resonant Euler flows [Crouseilles & Faou (2013), Enciso, Peralta-Salas
& Torres de Lizaur (2022)];
@ Space quasi-periodic and “spatial dynamics” in PDE
» Space bi-periodic analysis [Scheurle (1983), looss & Los (1990), looss &
Mielke (1991), Bridges & Rowland (1994), Bridges & Dias (1996)];
» Quasi-periodic for semilinear elliptic PDE [Valls (2006), Pola¢ic &
Valdebenito (2017)].
» Remark! In these results and in ours, space quasi-periodic means
quasi-periodic in ONE selected space direction!
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LIN & ZENG %—THRESHOLD FOR PERIODIC FLOWS

THEOREM (LIN & ZENG (ARMA, ’11))

Let T > 0 be a fixed period. The following hold:
ese |0, %) For any € > 0, there exists 1< (x, y) solution of (1) such that 1) has minimal
x-period T,

[A%e = 1lms(0,T)x (~1,1)) < €
and —0xe(x,y) is non-trivial in R x [—1,1];
® s> %: There exists €9 > 0 such that, for any traveling solution ¢)(x — ct,y), c € R, of the
Euler equation 0: Ay + {1, A} = 0 on R x [—1,1] with x-period T and satisfying

[A% = 1]lps(0,T)x (~1,1)) < €0,

we must have dxi)(x — ct,y) = 0 in the whole channel R x [—1,1] for all times t € R.

Important consequences:

e When s > % the non-existence of non-trivial invariant structures is a hint for
the nonlinear damping for inviscid flows close to Couette in H*;

e When s € [0, 2), there exist inviscid flows close to Couette in H* that cannot
damp down to a shear.
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LIN-ZENG CONSTRUCTION OF PERIODIC SOLUTIONS

e Starting point: a particular (monotone) shear flow (A >0, 0 <y « 1)

Y

Uyaly) =y + Ayerf(%) == y + - Ay? L e ds, ye[-1,1],

with associated stream function v, a(y) (i.e. ¥ 4 = U, a) satisfying
1/1ng = F(¢y,4), forsome F:R — R inherited from 1, 4;

e Goal: Construct the steady stream function ¥(x, y) = ¢.a(y) + ¢(x,y),
periodic in x with period 27/« that solves

AY(x,y) = F(¢(x,y)) with the same nonlinearity F: R —>R;  (2)

if (2) is fulfilled, then v (x, y) is a solution of the Euler equation (1)!

e When we linearize (2) around 1, 4, we get

" U//
A

026 = 030 + F/ (0, )0+ o(|9P) and F/(,0) = 372
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WHAT LEADS TO PERIODIC OSCILLATIONS
LEMMA

Let £, a: H*(—1,1) — L[?(—1,1) be the Schrédinger operator

Lya= _6)2/ + @aly), Qualy) = F'(dyaly)) = Uf’*‘(y)

with zero Dirichlet boundary conditions at {y = +1}. For any fixed A > 1, for

~ > 0 small enough, the operator L., o has a (unique) negative eigenvalue — ?Y’A.
The remaining part of the spectrum consists of positive eigenvalues.

o

e Key property: in the limit v — 0, the potential

1

—1
G (14 Ay Lt (L)) 720 440
N < Ay (7) o)

Q’Y,A()’) = —4A

in the sense of distributions, and the delta potential carries one negative
eigenvalue for the Schrodinger operator

Loa = 76}2, —4Ad(y) .
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THE BIFURCATION ARGUMENT IN LIN & ZENG

PROPOSITION

Assume U € C°[—1,1], monotone in [—1,1] and with U'(0) > 0, U"(0) =0
Define

U"(y)
Uly) — U(0)’

acting with zero Dirichlet conditions at {y = £1}. If L has a negative eigenvalue
—k2 with positive eigenfunction ¢o(y), then there exists ¢o > 0 such that, for any
€ € (0,ep), there exists a steady solution (u:(x, y), ve(x,y)) to the Euler equation,

periodic in x with minimal period T. — % as € — 0, such that

L:=—3+Qly): H(-1,1) - [*(-1,1), Qy) =

Ay = F(wa) ) HA'(/}E - Ul(y)”H2 =€
and the vector field near {y = 0} has leading order in ¢ — 0 given by

x,y) ~ Uly )+€¢6( ) cos( % x)

- [Kelvin’s cat-eyes flow].
Ve(x,y) ~ —e Zo(y) sin(Fx)

—A—
=
™
—~

v
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FIGURE: Streamlines of the Kelvin—Stuart cat’s-eye flow (source: Majda-Bertozzi book)
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Main steps of the proof:

o Construction of a nonlinearity F € C2(R), [max 1o, ming] < spt(f), where
¢y = U, by solving the Cauchy problem (assuming U(y) odd symmetric!)

{ F'(z) = Qg *(2))
F(40(0)) = ¥4(0)

o Look for a stream function of the form ¢(x,y) = ¥o(y) + #(&, y)|e=ax with
(&, y) 2m-periodic in x, such that

F(io(y)) = o(y), F'(oly)) = Qy):

AY = F(1), — 0?0320 + 020 — (F(¢ + o) — F(30)) =0,
¥(x, £1) = 1po(£1) o(€,+1) = 0.

o Apply Crandall-Rabinowitz Theorem with the nonlinear functional
F(p,0%) = %o + 0;¢ — (F(¢ + tho) — F(t)) =0,

bifurcating from the kernel Ker(G) := {cos(&)¢po(y)} of the linearized
operator

G = dyF(0,k3) = k§OF +0; — F'(1ho) = k3o —L.
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WHAT LEADS TO SPACE QUASI-PERIODIC FLOWS

o Key object: a well prescribed analytic potential Qy,(y), even in y,
depending on a parameter m » 1 such that, in the limit m — oo, it uniformly
approaches the classical potential well

m—00 0 ,
Qu(y) = Qu(E,r;y) = Qu(Ery):= { - :i: Zz

o Constrain: the depth E > 1 and the width r € (0,1) are related by
Er = ro(m + 1),

for a given kg € N, fixed from the very beginning, which counts the exact

number of negative eigenvalues —A?  (E), ..., =A%, . (E) < 0 for the operator

L= —(35 + Qm(y), with eigenfunctions Ln¢jm = —/\J?)m@-,m,

with Dirichlet boundary conditions on [—1,1]. The rest of the spectrum
(A7 (E))j=rot1 is strictly positive.
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THE SHEAR EQUILIBRIUM
@ We define the stream function ¢ (y) as the solution of the linear ODE

w() = Qu(¥)¥n(y), yel-11]. 3)
e When |y| > r, ¥ (y) behaves as the Couette flow, with

Un(y) "=y — Acusen(y), v >
@ When |y| < r, ¥n(y) ceases to be monotone and exhibits oscillations, with
Un(y) "7 Awsin(Ey), vl <.
In particular, ¥y (y) has exactly 2k¢ + 1 critical points
0=:yom < |¥y1m| < .- <|¥uom| <T.
PROPOSITION (PROXIMITY TO THE COUETTE FLOW)
There exists an even stream function ¥y (y), solution to (3), such that

”¢m - wcouHHf'[—l,l] < V/r and me - ¢cou||H4[—1,1] 2 \/L; .

= mid = et
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FIGURE: A (non-scaled) picture of the stream function ¥w(y), with ko = 2




THE (UNPERTURBED) NONLINEARITY

o We write [~1,1] = (J,_o 1. ., Ip, Where

YY)
p={yeR:ypm <|y[<¥p+1m}, P=1..,K0, Vrot1m:=1.

The stream function 1 (y) solves locally on each set I, a second-order
nonlinear ODE.

THEOREM (LOCAL NONLINEARITIES)

Let Se N and let m =m(xr) » 1. For any p =0,1, ..., ko, there exists a nonlinear
function F, € C3TH(R), ¥ — Fpm(v), such that

(O Fpm) (W (¥)) = Qu(y), y € [-1,1] = ¢n(y) = Fom(¥u(y)), y € Ip.

We have C>*1-continuity at 1 = 1w (y) at the critical points y = £y, m,
p =1, ..., kg, meaning that, for any n=10,1,....,.5 + 1,

im  O(Fotm(@a(¥))) = m  ON(Fom(@n()) = 52 (Fpm) -

Y|=Ypm Y=Y
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FIGURE: Picture of the stream function ¥ (y) close to the critical point yp m.
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AROUND THE SHEAR EQUILIBRIUM

@ We search for nontrivial stream functions close to ¢y (y) of the form
Y(x,y) = Ya(y)+(x,y), with ¢(x,y) space quasi-periodic in x € R

DEFINITION

Let ko € N. A function R 3 x — u(x) is quasi-periodic if there exist a function
T*® 5 x — I(x) and a frequency vector w € R"\{0} such that

u(x) = U(X)|emun, With w-£#0 Ve Z™\{0}.

@ Domain: D :=T" x [—1,1] = R x [—1,1], T% := (R/27Z)"°;
e Equation for the perturbation: having ¢(x,+1) =0,

(0, A} =0 V7R ALY (B + (B AuP) = 0

where
Ai=02+02 wo Ay = (w- k) +0y.
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o If we search for ¢(x, t) such that, for any p =0,1,..., ko

1/1{1()/) = FPym(wm()/)) hied Aw(XJ) = Fp,m(¢(X7Y))ﬂ (X7}/) eRx I,

then we immediately lose continuity at {|y| = yp,m}: in general

lim  Fotm(Pu(y) + o, y) #  lim  Fpa(n(y) + @(x,y))

yl=¥pm Y=Y m

unless p(x, £y, m) = 0 for any x € R (too strict!)

e Key idea: if you look for pertubations ¢(x,y) = O(e), perturb the
nonlinearities as well!

FP-m(w) b FPE(U) , €€ (0’ 1) ,

Properties that we want:
» It is perturbative: F,c(¢) — Fpm (%) uniformly as € — 0;
» Away from critical values, F, . essentially equals to Fp m;
> There is “room enough” to “accomodate” the perturbation ¢(x,y) and
reobtain continuity everywhere.
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THE EQUATION THAT WE SOLVE

o Equation for the perturbation: the starting point is Euler:

Y Y P=1pm(y)+ v v v v
(@, Bu} =0 PTER g ALGE+ (B U} + {5, B0} = 0,
The corresponding “elliptic” equation is (recalling ¥, (y) = Fpm(¥m(¥)))

At = Fpe() v DuB(x,y) = Fpe(tm(y) + 3(x,)) = Fom(¥m(y))

where (x,y) € T" x I,, p=0,1, ..., Ko;
e Boundary conditions: $(x,—1) = $(x,1) = 0;

e Symmetries. we search for (space) reversible G(x, y), namely

@(x,y) € even(x)even(y) ;

e Functional spaces: Sobolev spaces H? := H*(T"°, Hf([—1,1])), with

= Luxy) = 30 w)e™ < ul2, = 3 0 ol i < ).

LelZro LeZr0
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THE LINEAR PROBLEM AT THE EQUILIBRIUM

e Linearizing the Euler equation at ¢ = 0, we get, for (x,y) € T x [—1,1]
{m, D@} +{B, ¥} =0 v~ (W %)°B(x,y) = Lu(x,y)

(recall that Ly = —07 + Qm and that ¢ = Qutl,):;
e Family of space quasi-periodic solutions

Ko
p(xy) = ), Arcos(im(E)X)dim(y), A € R\{0} (4)
j=1
with frequency vector w = & (E) := (A1, m(E), ..., Auo,m (E)) € R*\{0} (recall
that —Af | (E), ..., —AZ, m(E) < 0 are the negative eigenvalues of Ly,).
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THE ROLE OF THE PARAMETER E
o Recall the constrain Er = o (7 + 1) and & (E) := (A1,m(E), -, Aug,m (E));

PROPOSITION (W, (E) 1S DIOPHANTINE)

Let E; > Ey > (ko + %)ﬂ'. Given T € (0,1) and T » 1, there exists a Borel set

K=K@,7) = {E€[E1,E] : [Ga(E) - £] =T, VLe Z™\{0}},

such that Ey — Ep — |K| = o(D).

o Goal: existence of a small amplitude, reversible space quasi-periodic
function @(x,y), solution of the equation

ALB(x,y) = Fpe(m(y) + 3%, ¥)) = Fom(@u(y)) (5)

with frequency vector w € R" close to Wy (E), resembling at leading order a

linear solution (4) at the equilibrium, for a fixed valued of the depth E€ K
and for most values of an auxiliary parameter

Ae J.(E) ;= [E—+/g,E++/c]. (6)
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THEOREM (F.-MASMOUDI-MONTALTO (2023))
Fix o € N andm » 1. Fix alsoE€ K and € = (£1,...,€mp) € RZS. Then there exist s > 0,
g0 > 0 such that the following hold.

1) For any € € (0,eq) there exists a Borel set G. = G.(E) c J-(E), withJ-(E) as in (6) and with
density 1 at E when € — 0, namely lime_0(2+/€) |G (E)| = 1;

2) There exists he = he(E) € H3([—1,1]), |he| s < €, he = even(y), such that, for any A € Ge,
the equation (5) has a reversible, space quasi-periodic solution of the form

Ko
¢5(X’y)|X:L:)(A)X = hE(E;y) te Z gj COS((T)j(A)X)Qﬁj,m(E;y) + F~’:‘(Xa.)’)'x:LTJ(A)X ) (7)
j=1
Vels.s

where - = F-(E,A;X,y) € H5-3, with lim._o =0, and & = (&j)j=1,...,ry € R", depending
on A and e, with |&(A) — &m (E)| < C+/e, with C > 0 independent of E and A. Moreover for any
€ €[0,e0], the stream function

wE(Xv y) = IZJE(X» }/)‘X:G(A)x = d)m(y) + SEE(X’ .y)|x::I;(A)x ) (8)

with pe(x,y) as in (7), defines a space quasi-periodic solution of the steady 2D Euler equation
that is close to the Couette flow with estimates

”TZE — Peou

5.3 S5 ﬁ e, eouly) = 3y*.
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COMMENTS ON THE MAIN RESULTS

@ The shear perturbation h.(y) comes from the forced modification in (5) of
the nonlinearities Fp (1)) into Fp,(1);

@ The second term of ¢ (x,y) in (8) retains the space quasi-periodicity of the
linearized solution and is constructed with a suitable Nash-Moser iterative
scheme (the eigenfunctions (¢; m (E; y))jen depend on the parameter E!);

o Such solutions exist for fixed values of the depth E € K so that &y (E) is
Diophantine and for most values of the auxiliary parameter A € J.(E) so that
W = W(A,e) is non-resonant as well;

o Traveling quasi-periodic flows: the stream function

wtr(t7xay) =y + ¢5(X - Ctay)
=cy + ¢m()’) + ¢E(¢7 y)|d>:x—19:§;(x—ct) ) X, ¥ e Tro 3

solve the Euler equations in vorticity formulation

(Qtr)t + (wtr)y(Qtr)x - (¢tr)x(Qtr)y = 07 Qtr = Awtr .
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o Generalized Kelvin's cat-eyes flow: The flow generated by the stream

function ¢-(x, y) is a deformation of the near-Couette shear flow (Y (y),0):

(u(x,}/)) _ (ﬂ)ﬁn( y) + h. (Y)) +5Z\/5( cos(&;x Jm()’))) +o(e).

v(x,y) @j sin(@Wjx)djm(
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SUMMARY OF MAIN DIFFICULTIES AND NOVELTIES

@ The nonlinearity of the semilinear “elliptic” problem that we solve is actually
an “unknown” of the problem and it has to be constructed in such a way that
one has a near Couette, space quasi-periodic solution to the Euler equation;

@ Each space quasi-periodic function . (x,y) solve a nonlinear PDE with
nonlinearities explicitly depending of the size € of the solution;

@ The nonlinearities have finite smoothness and their derivatives lose in size;

@ The unperturbed frequencies of oscillations are only implicitly defined and
their non-degeneracy property relies on an asymptotic expansion for large
values of the parameter. It implies that the required non-resonance
conditions are not trivial to verify;

o The basis of eigenfunctions (¢ m(y))jen of the operator Ly, = —02 + Qu(y)
is not the standard exponential basis and depends explicitly on the depth
parameter E;

@ The potential Qu(y) is the ruler ot the schemel!

Luca Franzol (NYU ABu DHABI) SPACE QUASI-PERIODIC NEAR COUETTE ScHOOL/WORKSHOP ON WAVE DYNA!



STRATEGY OF THE PROOF

@ The shear equilibrium ¥y, (y) close to Couette and its nonlinear ODE

m() = Qu)¥u(y) v VoY) = Fom(¥m(y)), v € Ip;
@ A forced elliptic PDE for the perturbation of the shear equilibrium
AL@(x,y) = Fpe(tm(y) + B(%,¥)) = Fom(¥m(¥));

@ A Nash-Moser scheme of hypothetical conjugation with the auxiliary
parameter
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THE POTENTIAL Qu(y) AND ITS PROPERTIES
@ For m » 1 large enough, we define the even function
_ v w2 cosh(Z)\m -1
Qu(y) = Qn(E,xiy) ~ —F ((cosh(l)) * 1) ’

such that, in the limit m — oo, it uniformly approaches the classical potential
well (on compact intervals excluding {|y| = r})

m—00 0 ;
Qn(y) = Qn(E.7iy) "= Qu(E.x1y) =={Ez IiIZ

LEMMA (ESTIMATES FOR Qu(y))

We have
sup || Qul i ((-1,17) < | Qo lleze((—1,17) < E*.
m>»1

Moreover, for any fixed v > O sufficiently small, we have, for any n € Ny,
105(Qu(y) = Qu(¥))| = 0 uniformly in y € [~1,1]\(B,(r) U By (~T1))

and ”Qm - QOOHLP([—l,l]) — 0 for any p € [1, OO)

v

= i = =
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HOwW TO CONSTRUCT THE NONLINEARITY Fg (1))

@ We determine the even shear ¢y (y) by solving ¥ (y) = Qu(y)¥i (v);
o Since Qu(y) and ¥ (y) are even, then (recall that ¢ (y1,m) = 0)

Qu(y) = Kom(¥?): ¥m(¥) = Gom(y®), 0<|y| <yim,

where Ko,m, Go,m € C%;

o Y (y) is invertible as a function of y? until reaches |y| = y1 m:

! 0, 0
{1/Jm(}/) >0, <l <yim = Gom(z) is invertible for 0 < z < \/y1.m;

m(0) #0,

o We define Fy (7)) as solution of the Cauchy problem

{ (@) = Kom (Goh(#), @ € ¢m([0,y1,m — 70)
FO,m(¢m(0)) =Yg (0) .
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HOwW TO CONSTRUCT THE NONLINEARITY Fj (%))
\Jr

RACARACHS) ¥.(7,.)

T, o I, L.

o Qum(y) and ¥ (y) are not even-symmetric with respect to y = y1,m, BUT
they are close to be: we can write, for ||y| — y1,m| < r1,4, with

ri,— =Y¥im — Yom and i+ =Y¥2,m — Yim-
Qu(y) = Kimx ((Iyl = y1m)?) s Kim,+ € C°(Bs7(0)),
Um(y) = Grm+ ((lyl = y1m)?) . Grm+ € C*TH(Bg£(0));

o In their regions (where ¢ (y) does not change sign), both G; 1, —(z) and
G1,m,+(2) are invertible (also here, ¥ (y1,m) # 0).
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o In the region 0 < |y| < y1,m, we consider

Fé,m(d)) = Kl,m,f(Gl_,;,f(w)% (B wm(['Yl,f;YI,m]) )
Fo,m(¥m(y1,m)) = ¥ (y1,m) »

which has to coincide with the Fy (1)) constructed before, because

Fom(Wm(y)) = Qu(y) VIyl€ [0, y1m]

o In the region y1m < |y| < y2,m, we define F; , as the solution of

F{,m(¢) = Kl,m,+(G1 111 +(w))’ '(/) € ¢m([y1,may2,m - ’Yl,+]) y
Fl,m(¢m(y1,m)) = wm(yl,m) )

e Thanks to the "“approximate local evenness” we have C5*!-continuity when
Y =1Yn(y) aty = £y1m: forany n=10,1,...,5+1,

im0 (Fom(@n(¥) = lim  2(FLu@n(y)) =8 (y1m)-

|}/‘4’yl m ‘Y|*’y1 m
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THE ISSUE NONLINEARITY VS. PERTURBATION

e Recall: If we search for 1(x, t) such that, for any p = 0,1, ..., ko

m(Y) = Fom(@m(y)) v AU(x,y) = Fom(¥(x,y)), (x,y) eRxI,

then we immediately lose continuity at {|y| = yp.m}: in general

lim Fo—1,m(¥m(y) + @(x,y)) # |im+ Fom(¥m(y) + ¢(x,¥))
yl=Ypm YI=¥pm
unless o(x, £ypm) = 0 for any x € R (too strict!)

o Key idea: replace F, , with a perturbed version to “accomodate” the
perturbation ¢(x,y) = O(e):

%(prl,m(w) + Fp,m(d’)): Fo—1,n() Id’ — Ym EYp,mg‘l <n,
Y — Ym(yp,m)| =21 and
Fon(¥) = § Fom(¥) [ — Y (V)] > 20,
%(FP+1,m(’lZ)) + Fp,m("l}))* Fpi1 //(‘ ) “ ) — "m(YprmJ =],

where 77 = £1/° » ¢ € (0,1), with smooth connections in the remaining
regions, so that Fp, () — Fp (%) uniformly as n — 0.

Luca Franzol (NYU ABu DHABI) SPACE QUASI-PERIODIC NEAR COUETTE ScHOOL/WORKSHOP ON WAVE DYNA!



R

19 = {-_P" rmn

‘:P‘»I,? - Ll‘(pprr,n{h F " ) - Fl;ﬁ?
(NYU ABU DHABI)

|__
FIGURE: Where the nonlinearities F, , are constructed
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SPECTRAL ANALYSIS OF Ly = —02 + Qu(y)

PROPOSITION

The Schrédinger operator L = —02 + Qu(y) is self-adjoint in L3([—1,1]) on
D(Lw) := Hj ,yon[—1,1] with a countable L2-basis (¢j,m(y))jen < C*[—1,1] corresponding to

the eigenvalues (f1j,m)jen. Moreover, there exists m = m(E1,Ez, ko) » 1 large enough such that,
for any m > m,

o —)\J?,me(—Ez,O) j=1,.., ko,
S P j=ro+1.

In particular, for any j =1, ..., kg, we have that \;  is close to \j o, with the latter being the
J-th root out of kg in the region X € (0,E) of the equation

F(A) := Acos (rVE2 — X2) coth((1 — r)A) — VE2 — A2sin (rvE2 — A2) = 0.

LEMMA
For any j = 1, ..., kg, we have the asymptotic expansion
Aj,0(E) = Ecos (ﬂ(ao(J) +a2() B (E)? + O(ﬂj(E)3))) , E—> 400,

j—31—a()
—2

Bi(E) 1= exp (((wo + 3)m — E) cos(mao())) , sin(mao(j)) =
Ko + 7

v
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Thank you for your attention!
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