QUASI-PERIODIC STEADY INVARIANT STRUCTURES IN INCOMPRESSIBLE FLUIDS (JOINT WORK WITH N.MASMOUDI AND R. MONTALTO)

Luca Franzoi (NYU Abu Dhabi)

School/Workshop on Wave Dynamics: Turbulent vs Integrable Effects ICTP, Trieste - August 30th, 2023

Luca Franzoi (NYU Abu Dhabi)

Space Quasi-periodic near Couette

SCHOOL/WORKSHOP ON WAVE DYNA

イロト イポト イヨト イヨト

OUTLINE

1 INTRODUCTION AND INFORMAL RESULT

- **2** Lin & Zeng result for periodic steady flows
- **③** Setup for space quasi-periodic steady flows
- **4** Main Theorem
- **(5)** Scheme of the proof and main difficulties
- 6 Some details of the proofs

イロト イポト イヨト イヨト

EULER EQUATION IN THE CHANNEL

- Domain: two-dimensional finite channel $\mathbb{R}\times [-1,1];$
- Stationary Euler equation in vorticity-stream function formulation

$$\{\psi, \Delta\psi\} := \psi_x(\Delta\psi)_y - \psi_y(\Delta\psi)_x = 0; \qquad (1)$$

- Impermeability condition at the boundary: $\psi_x = 0$ on $\{y = \pm 1\}$;
- Velocity field: $(u(x, y), v(x, y)) := \nabla^{\perp} \psi(x, y) = (\partial_y \psi(x, y), -\partial_x \psi(x, y)).$

INFORMAL THEOREM

Let $\kappa_0 \in \mathbb{N}$. There exist $\varepsilon_0 > 0$ small enough and a family of stationary solutions $(\psi_{\varepsilon}(x,y) = \check{\psi}_{\varepsilon}(\mathbf{x},y)|_{\mathbf{x}=\check{\omega}x})_{\varepsilon\in[0,\varepsilon_0]}$ of the Euler equation (1) in the finite channel $(x,y) \in \mathbb{R} \times [-1,1]$ that are quasi-periodic in the horizontal direction $x \in \mathbb{R}$ for some frequency vector $\check{\omega} \in \mathbb{R}^{\kappa_0}$, with $\mathbf{x} = \check{\omega}x \in \mathbb{T}^{\kappa_0}$. Such family bifurcates from a shear equilibrium $\psi_m(y)$ and can be chosen to be arbitrarily close to the Couette flow $\psi_{cou}(y) := \frac{1}{2}y^2$ in $H^s_{\mathbf{x}} H^{7/2-}_{\mathbf{y}}(\mathbb{T}^{\kappa_0} \times [-1,1])$, with s > 0 sufficiently large.

The hydrodynamics (in)stability problem

FIGURE: Kelvin-Helmholtz instability for two layered shear flows (credits: Lawrence et at. (1991) - Cushman-Roisin (2005))

Luca Franzoi (NYU Abu Dhabi)

Space Quasi-periodic near Couette

・ロト ・日 ・ ・ ヨ ・ ・

LITERATURE OVERVIEW: INVISCID DYNAMICS AROUND SHEAR FLOWS

- Linear and nonlinear damping for Vlasov-Poisson [Mouhot & Villani (2011)]
- Linear inviscid damping for Euler close to Couette [Kelvin (1887), Orr (1907), Lin & Zeng (2011)];
- Nonlinear inviscid damping [Bedrossian & Masmoudi (2015), Deng & Masmoudi (2018), Ionescu & Jia (2020)];
- Stratified fluids with flows close to Couette [Yang & Lin (2018), Bianchini, Coti-Zelati & Dolce (2020)];
- Compressible fluids [Antonelli, Dolce & Marcati (2021)];
- Linear inviscid damping for other shear flows [Zillinger (2017)];
- Oscillatory stationary flows [Li & Lin (2011), Lin & Zeng (2011), Coti-Zelati, Elgindi & Widmayer (2020)].

LITERATURE OVERVIEW: QUASI-PERIODIC FLOWS

• Time quasi-periodic solution in fluid dynamics

- 2D water waves equation [Berti & Montalto (2017), Baldi, Berti, Haus & Montalto (2018), Berti, F. & Maspero (2020,2021), Feola & Giuliani (2020)];
- Vortex patches in active scalar equations [Berti, Hassainia & Masmoudi (2022), Hmidi & Roulley (2021), Hassainia, Hmidi & Masmoudi (2021), Hassainia & Roulley (2022), Hassainia, Hmidi & Roulley (2023), Roulley (2022), Garcia, Hassainia & Roulley (2023), Gómez-Serrano, Ionescu & Park (2023)];
- Forced Euler and Navier-Stokes [Baldi & Montalto (2021), Montalto (2021),
 F. & Montalto (2022)];
- Non-resonant Euler flows [Crouseilles & Faou (2013), Enciso, Peralta-Salas & Torres de Lizaur (2022)];

• Space quasi-periodic and "spatial dynamics" in PDE

- Space bi-periodic analysis [Scheurle (1983), looss & Los (1990), looss & Mielke (1991), Bridges & Rowland (1994), Bridges & Dias (1996)];
- Quasi-periodic for semilinear elliptic PDE [Valls (2006), Poláčic & Valdebenito (2017)].
- Remark! In these results and in ours, space quasi-periodic means quasi-periodic in ONE selected space direction!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

LIN & ZENG $\frac{3}{2}$ -THRESHOLD FOR PERIODIC FLOWS

THEOREM (LIN & ZENG (ARMA, '11))

Let T > 0 be a fixed period. The following hold: • $s \in [0, \frac{3}{2})$: For any $\varepsilon > 0$, there exists $\psi_{\varepsilon}(x, y)$ solution of (1) such that ψ_{ε} has minimal *x*-period *T*,

$$\|\Delta\psi_{\varepsilon}-1\|_{H^{\mathfrak{s}}((0,T)\times(-1,1))}<\varepsilon\,,$$

and $-\partial_x \psi_{\varepsilon}(x, y)$ is non-trivial in $\mathbb{R} \times [-1, 1]$;

• $s > \frac{3}{2}$: There exists $\varepsilon_0 > 0$ such that, for any traveling solution $\psi(x - ct, y)$, $c \in \mathbb{R}$, of the Euler equation $\partial_t \Delta \psi + \{\psi, \Delta \psi\} = 0$ on $\mathbb{R} \times [-1, 1]$ with x-period T and satisfying

$$\|\Delta \psi - 1\|_{H^{\mathfrak{s}}((0,T)\times(-1,1))} < \varepsilon_0,$$

we must have $\partial_x \psi(x - ct, y) \equiv 0$ in the whole channel $\mathbb{R} \times [-1, 1]$ for all times $t \in \mathbb{R}$.

Important consequences:

- When $s > \frac{3}{2}$, the non-existence of non-trivial invariant structures is a hint for the nonlinear damping for inviscid flows close to Couette in H^s ;
- When $s \in [0, \frac{3}{2})$, there exist inviscid flows close to Couette in H^s that cannot damp down to a shear.

LIN-ZENG CONSTRUCTION OF PERIODIC SOLUTIONS

• Starting point: a particular (monotone) shear flow (A > 0, $0 < \gamma \ll 1$)

$$U_{\gamma,A}(y) = y + A\gamma^2 \operatorname{erf}\left(\frac{y}{\gamma}\right) := y + \frac{2}{\sqrt{\pi}} A\gamma^2 \int_0^{\frac{y}{\gamma}} e^{-s^2} \,\mathrm{d}s\,, \quad y \in \left[-1,1\right],$$

with associated stream function $\psi_{\gamma,\mathcal{A}}(y)$ (i.e. $\psi'_{\gamma,\mathcal{A}}=U_{\gamma,\mathcal{A}})$ satisfying

 $\psi_{\gamma,\mathcal{A}}''=\mathcal{F}(\psi_{\gamma,\mathcal{A}})\,,\quad\text{for some}\ \ \mathcal{F}:\mathbb{R}\to\mathbb{R}\quad\text{inherited from}\ \ \psi_{\gamma,\mathcal{A}}\,\text{;}$

• **<u>Goal</u>**: Construct the steady stream function $\psi(x, y) = \psi_{\gamma,A}(y) + \phi(x, y)$, periodic in x with period $2\pi/\alpha$, that solves

 $\Delta \psi(x,y) = F(\psi(x,y)) \quad \text{with the same nonlinearity} \quad F: \mathbb{R} \to \mathbb{R}; \qquad (2)$

if (2) is fulfilled, then $\psi(x, y)$ is a solution of the Euler equation (1)! • When we linearize (2) around $\psi_{\gamma,A}$, we get

$$\partial_x^2 \phi = -\partial_y^2 \phi + F'(\psi_{\gamma,A})\phi + o(|\phi|^2) \text{ and } F'(\psi_{\gamma,A}) = \frac{\psi_{\gamma,A}''}{\psi_{\gamma,A}'} = \frac{U_{\gamma,A}''}{U_{\gamma,A}} \dots$$

WHAT LEADS TO PERIODIC OSCILLATIONS

LEMMA

Let $\mathcal{L}_{\gamma,A}: H^2(-1,1) \rightarrow L^2(-1,1)$ be the Schrödinger operator

$$\mathcal{L}_{\gamma,\mathcal{A}} = -\partial_y^2 + \mathcal{Q}_{\gamma,\mathcal{A}}(y) \,, \quad \mathcal{Q}_{\gamma,\mathcal{A}}(y) := F'(\psi_{\gamma,\mathcal{A}}(y)) := rac{U''_{\gamma,\mathcal{A}}(y)}{U_{\gamma,\mathcal{A}}(y)} \,,$$

with zero Dirichlet boundary conditions at $\{y = \pm 1\}$. For any fixed $A > \frac{1}{2}$, for $\gamma > 0$ small enough, the operator $\mathcal{L}_{\gamma,A}$ has a (unique) negative eigenvalue $-\beta_{\gamma,A}^2$. The remaining part of the spectrum consists of positive eigenvalues.

• Key property: in the limit $\gamma \rightarrow 0$, the potential

$$Q_{\gamma,\mathcal{A}}(y) = -4A \frac{1}{\gamma \sqrt{\pi}} e^{-\left(\frac{y}{\gamma}\right)^2} \left(1 + A\gamma \frac{\gamma}{y} \operatorname{erf}\left(\frac{y}{\gamma}\right)\right)^{-1} \stackrel{\gamma \to 0}{\to} -4A\delta_0(y)$$

in the sense of distributions, and the delta potential carries one negative eigenvalue for the Schrödinger operator

$$\mathcal{L}_{0,A} := -\partial_y^2 - 4A\delta_0(y) \,.$$

イロン 不同 とくほど 不同 とう

The bifurcation argument in Lin & Zeng

PROPOSITION

Assume $U \in C^5[-1,1]$, monotone in [-1,1] and with U'(0) > 0, U''(0) = 0. Define

$$\mathcal{L} := -\partial_y^2 + Q(y) : H^2(-1,1) \to L^2(-1,1), \quad Q(y) = \frac{U''(y)}{U(y) - U(0)},$$

acting with zero Dirichlet conditions at $\{y = \pm 1\}$. If \mathcal{L} has a negative eigenvalue $-k_0^2$ with positive eigenfunction $\phi_0(y)$, then there exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in (0, \varepsilon_0)$, there exists a steady solution $(u_{\varepsilon}(x, y), v_{\varepsilon}(x, y))$ to the Euler equation, periodic in x with minimal period $T_{\varepsilon} \rightarrow \frac{2\pi}{k_0}$ as $\varepsilon \rightarrow 0$, such that

$$\Delta \psi_{\varepsilon} = F(\psi_{\varepsilon}), \quad \|\Delta \psi_{\varepsilon} - U'(y)\|_{H^2} = \varepsilon$$

and the vector field near $\{y = 0\}$ has leading order in $\varepsilon \to 0$ given by

$$\begin{cases} u_{\varepsilon}(x,y) \sim U(y) + \varepsilon \, \phi_0'(y) \cos(\frac{2\pi}{T_{\varepsilon}}x) \\ v_{\varepsilon}(x,y) \sim & -\varepsilon \, \frac{2\pi}{T_{\varepsilon}} \phi_0(y) \sin(\frac{2\pi}{T_{\varepsilon}}x) \end{cases} \quad \text{[Kelvin's cat-eyes flow]}. \end{cases}$$

FIGURE: Streamlines of the Kelvin-Stuart cat's-eye flow (source: Majda-Bertozzi book)

æ

イロト イヨト イヨト イヨト

Main steps of the proof:

• Construction of a nonlinearity $F \in C_0^2(\mathbb{R})$, $[\max \psi_0, \min \psi_0] \subseteq \operatorname{spt}(f)$, where $\phi'_0 = U$, by solving the Cauchy problem (assuming U(y) odd symmetric!)

$$\begin{cases} F'(z) = Q(\psi_0^{-1}(z)) \\ F(\psi_0(0)) = \psi_0''(0) \end{cases} \longrightarrow F(\psi_0(y)) = \psi_0''(y), \quad F'(\psi_0(y)) = Q(y); \end{cases}$$

• Look for a stream function of the form $\psi(x, y) = \psi_0(y) + \phi(\xi, y)|_{\xi=\alpha x}$ with $\phi(\xi, y) 2\pi$ -periodic in x, such that

$$\begin{cases} \Delta \psi = F(\psi), \\ \psi(x, \pm 1) = \psi_0(\pm 1) \end{cases} \longrightarrow \begin{cases} \alpha^2 \partial_{\xi}^2 \phi + \partial_{y}^2 \phi - \left(F(\phi + \psi_0) - F(\psi_0)\right) = 0, \\ \phi(\xi, \pm 1) = 0. \end{cases}$$

• Apply Crandall-Rabinowitz Theorem with the nonlinear functional

$$\mathcal{F}(\phi, \alpha^2) := \alpha^2 \partial_{\xi}^2 \phi + \partial_{y}^2 \phi - \left(\mathcal{F}(\phi + \psi_0) - \mathcal{F}(\psi_0) \right) = \mathbf{0},$$

bifurcating from the kernel ${\rm Ker}(\mathcal{G}):=\{\cos(\xi)\phi_0(y)\}$ of the linearized operator

$$\mathcal{G} := \mathrm{d}_{\phi} \mathcal{F}(0, k_0^2) := k_0^2 \partial_{\xi}^2 + \partial_y^2 - F'(\psi_0) = k_0^2 \partial_{\xi}^2 - \mathcal{L}.$$

WHAT LEADS TO SPACE QUASI-PERIODIC FLOWS

• Key object: a well prescribed analytic potential $Q_{\mathfrak{m}}(y)$, even in y, depending on a parameter $\mathfrak{m} \gg 1$ such that, in the limit $\mathfrak{m} \to \infty$, it uniformly approaches the classical potential well

$$egin{aligned} Q_{\mathfrak{m}}(y) &= Q_{\mathfrak{m}}(\operatorname{E}, \operatorname{r}; y) \stackrel{\mathfrak{m} o \infty}{ o} Q_{\infty}(\operatorname{E}, \operatorname{r}; y) := egin{cases} 0 & |y| > \operatorname{r}\,, \ -\operatorname{E}^2 & |y| < \operatorname{r}\,; \end{aligned}$$

• Constrain: the depth E > 1 and the width $r \in (0,1)$ are related by

$$\mathrm{Er} = \kappa_0(\pi + \frac{1}{4}),$$

for a given $\kappa_0 \in \mathbb{N}$, fixed from the very beginning, which counts the exact number of negative eigenvalues $-\lambda_{1,\mathfrak{m}}^2(\mathbb{E}), ..., -\lambda_{\kappa_0,\mathfrak{m}}^2(\mathbb{E}) < 0$ for the operator

$$\mathcal{L}_{\mathfrak{m}} := -\partial_y^2 + Q_{\mathfrak{m}}(y) \,, \quad ext{with eigenfunctions} \quad \mathcal{L}_{\mathfrak{m}} \phi_{j,\mathfrak{m}} = -\lambda_{j,\mathfrak{m}}^2 \phi_{j,\mathfrak{m}} \,,$$

with Dirichlet boundary conditions on [-1, 1]. The rest of the spectrum $(\lambda_{j,\mathfrak{m}}^{2}(\mathbf{E}))_{j \ge \kappa_{0}+1}$ is strictly positive.

イロン 不同 とくほど 不同 とう

THE SHEAR EQUILIBRIUM

• We define the stream function $\psi_{\mathfrak{m}}(y)$ as the solution of the linear ODE

$$\psi_{\mathfrak{m}}^{\prime\prime\prime}(y) = Q_{\mathfrak{m}}(y)\psi_{\mathfrak{m}}^{\prime}(y), \quad y \in [-1,1].$$
 (3)

• When |y| > r, $\psi_{\mathfrak{m}}(y)$ behaves as the Couette flow, with

$$\psi'_{\mathfrak{m}}(y) \stackrel{\mathfrak{m} \to \infty}{\to} y - A_{\mathrm{out}} \mathrm{sgn}(y), \quad |y| > r;$$

 \bullet When $|y| < \texttt{r}, \ \psi_{\mathfrak{m}}(y)$ ceases to be monotone and exhibits oscillations, with

$$\psi'_{\mathfrak{m}}(y) \stackrel{\mathfrak{m} \to \infty}{\to} A_{\mathrm{in}} \sin(\mathrm{E} y) \,, \quad |y| < \mathrm{r} \,.$$

In particular, $\psi_{\mathfrak{m}}(y)$ has exactly $2\kappa_0 + 1$ critical points

$$0 =: \mathtt{y}_{0,\mathfrak{m}} < |\mathtt{y}_{1,\mathfrak{m}}| < ... < |\mathtt{y}_{\kappa_0,\mathfrak{m}}| < \mathtt{r} \,.$$

PROPOSITION (PROXIMITY TO THE COUETTE FLOW)

There exists an even stream function $\psi_{\mathfrak{m}}(y)$, solution to (3), such that

$$\|\psi_{\mathfrak{m}} - \psi_{\mathrm{cou}}\|_{H^{3}[-1,1]} \lesssim \sqrt{\mathbf{r}} \text{ and } \|\psi_{\mathfrak{m}} - \psi_{\mathrm{cou}}\|_{H^{4}[-1,1]} \gtrsim \frac{1}{\sqrt{\mathbf{r}}}.$$

FIGURE: A (non-scaled) picture of the stream function $\psi_{\mathfrak{m}}(y)$, with $\kappa_0 = 2$

크

イロン 不同 とくほど 不同 とう

The (unperturbed) nonlinearity

• We write
$$[-1,1] = \bigcup_{\rho=0,1,\ldots,\kappa_0} I_{\rho}$$
, where

 $\mathtt{I}_{p} := \{ y \in \mathbb{R} : \mathtt{y}_{p,\mathfrak{m}} \leqslant |y| \leqslant \mathtt{y}_{p+1,\mathfrak{m}} \}, \ p = 1, ..., \kappa_{0}, \ \mathtt{y}_{\kappa_{0}+1,\mathfrak{m}} := 1.$

The stream function $\psi_{\mathfrak{m}}(y)$ solves **locally** on each set I_p a second-order nonlinear ODE.

THEOREM (LOCAL NONLINEARITIES)

Let $S \in \mathbb{N}$ and let $\mathfrak{m} \ge \overline{\mathfrak{m}}(\mathbf{r}) \gg 1$. For any $p = 0, 1, ..., \kappa_0$, there exists a nonlinear function $F_{p,\mathfrak{m}} \in \mathcal{C}_0^{S+1}(\mathbb{R}), \ \psi \to F_{p,\mathfrak{m}}(\psi)$, such that

 $(\partial_{\psi} \mathcal{F}_{\rho,\mathfrak{m}})(\psi_{\mathfrak{m}}(y)) = \mathcal{Q}_{\mathfrak{m}}(y), \ y \in [-1,1] \Rightarrow \ \psi_{\mathfrak{m}}''(y) = \mathcal{F}_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)), \ y \in I_{\rho}.$

We have C^{S+1} -continuity at $\psi = \psi_{\mathfrak{m}}(y)$ at the critical points $y = \pm y_{p,\mathfrak{m}}$, $p = 1, ..., \kappa_0$, meaning that, for any n = 0, 1, ..., S + 1,

$$\lim_{|y|\to y_{\rho,\mathfrak{m}}^-} \partial_y^n(F_{\rho-1,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))) = \lim_{|y|\to y_{\rho,\mathfrak{m}}^+} \partial_y^n(F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))) = \psi_{\mathfrak{m}}^{(n+2)}(y_{\rho,\mathfrak{m}}).$$

Ξ.

・ロト ・回ト ・ヨト ・ヨト

FIGURE: Picture of the stream function $\psi_{\mathfrak{m}}(y)$ close to the critical point $y_{\rho,\mathfrak{m}}$.

・ロト ・ 日 ・ ・ ヨ ・ ・

AROUND THE SHEAR EQUILIBRIUM

• We search for nontrivial stream functions close to $\psi_{\mathfrak{m}}(y)$ of the form

 $\psi(x,y) = \psi_{\mathfrak{m}}(y) + \varphi(x,y)$, with $\varphi(x,y)$ space quasi-periodic in $x \in \mathbb{R}$

DEFINITION

Let $\kappa_0 \in \mathbb{N}$. A function $\mathbb{R} \ni x \mapsto u(x)$ is **quasi-periodic** if there exist a function $\mathbb{T}^{\kappa_0} \ni \mathbf{x} \mapsto \breve{u}(\mathbf{x})$ and a frequency vector $\omega \in \mathbb{R}^{\kappa_0} \setminus \{0\}$ such that

$$u(x) = \breve{u}(\mathbf{x})|_{\mathbf{x}=\omega x}, \quad \text{with} \ \omega \cdot \ell \neq 0 \quad \forall \, \ell \in \mathbb{Z}^{\kappa_0} \setminus \{0\}.$$

- <u>Domain</u>: $\mathcal{D} := \mathbb{T}^{\kappa_0} \times [-1,1] \hookrightarrow \mathbb{R} \times [-1,1], \ \mathbb{T}^{\kappa_0} := (\mathbb{R}/2\pi\mathbb{Z})^{\kappa_0};$
- Equation for the perturbation: having $\varphi(x, \pm 1) = 0$,

$$\{\psi, \Delta\psi\} = 0 \xrightarrow{\psi=\psi_{\mathfrak{m}}(y)+\varphi} \{\psi_{\mathfrak{m}}, \Delta_{\omega}\breve{\varphi}\} + \{\breve{\varphi}, \psi_{\mathfrak{m}}''\} + \{\breve{\varphi}, \Delta_{\omega}\breve{\varphi}\} = 0$$

where

$$\Delta := \partial_x^2 + \partial_y^2 \quad \leadsto \quad \Delta_\omega := (\omega \cdot \partial_{\mathbf{x}})^2 + \partial_y \,.$$

I NOR

イロト イポト イヨト イヨト

• If we search for $\psi(x,t)$ such that, for any $p=0,1,...,\kappa_0$

$$\psi_{\mathfrak{m}}''(y) = F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)) \quad \leadsto \quad \Delta\psi(x,y) = F_{\rho,\mathfrak{m}}(\psi(x,y)), \quad (x,y) \in \mathbb{R} \times I_{\rho}$$

then we immediately lose continuity at $\{|y| = y_{p,m}\}$: in general

$$\lim_{|y| \to y_{\rho,\mathfrak{m}}^{-}} F_{\rho-1,\mathfrak{m}}(\psi_{\mathfrak{m}}(y) + \varphi(x,y)) \neq \lim_{|y| \to y_{\rho,\mathfrak{m}}^{+}} F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y) + \varphi(x,y))$$

unless $\varphi(x, \pm y_{\rho, \mathfrak{m}}) = 0$ for any $x \in \mathbb{R}$ (too strict!)

• Key idea: if you look for pertubations $\varphi(x, y) = O(\varepsilon)$, perturb the nonlinearities as well!

$$F_{p,m}(\psi) \iff F_{p,\varepsilon}(\psi), \quad \varepsilon \in (0,1);$$

Properties that we want:

- It is perturbative: $F_{p,\varepsilon}(\psi) \to F_{p,\mathfrak{m}}(\psi)$ uniformly as $\varepsilon \to 0$;
- Away from critical values, $F_{p,\varepsilon}$ essentially equals to $F_{p,\mathfrak{m}}$;
- ▶ There is "room enough" to "accomodate" the perturbation $\varphi(x, y)$ and reobtain continuity everywhere.

THE EQUATION THAT WE SOLVE

• Equation for the perturbation: the starting point is Euler:

$$\{\breve{\psi}, \Delta_{\omega}\breve{\psi}\} = 0 \xrightarrow{\psi = \psi_{\mathfrak{m}}(y) + \varphi} \{\psi_{\mathfrak{m}}, \Delta_{\omega}\breve{\varphi}\} + \{\breve{\varphi}, \psi_{\mathfrak{m}}''\} + \{\breve{\varphi}, \Delta_{\omega}\breve{\varphi}\} = 0.$$

The corresponding "elliptic" equation is (recalling $\psi_{\mathfrak{m}}''(y) = F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))$)

$$\Delta_{\omega}\breve{\psi} = F_{\rho,\varepsilon}(\breve{\psi}) \iff \Delta_{\omega}\breve{\varphi}(\mathbf{x},y) = F_{\rho,\varepsilon}(\psi_{\mathfrak{m}}(y) + \breve{\varphi}(\mathbf{x},y)) - F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))$$

where $(\mathbf{x}, y) \in \mathbb{T}^{\kappa_0} \times \mathbb{I}_p$, $p = 0, 1, ..., \kappa_0$;

- Boundary conditions: $\breve{\varphi}(\mathbf{x}, -1) = \breve{\varphi}(\mathbf{x}, 1) = 0$;
- Symmetries: we search for (space) reversible $\breve{\varphi}(\mathbf{x}, y)$, namely

 $\breve{\varphi}(\mathbf{x}, y) \in \operatorname{even}(\mathbf{x})\operatorname{even}(y)$;

• *Functional spaces*: Sobolev spaces $H^{s,\rho} := H^s(\mathbb{T}^{\kappa_0}, H^{\rho}_0([-1,1]))$, with

$$H^{s,\rho} := \Big\{ u(\mathbf{x},y) = \sum_{\ell \in \mathbb{Z}^{\kappa_0}} u_{\ell}(y) e^{i\ell \cdot \mathbf{x}} : \|u\|_{s,\rho}^2 := \sum_{\ell \in \mathbb{Z}^{\kappa_0}} \langle \ell \rangle^{2s} \|u_{\ell}\|_{H^{\rho}_{0}([-1,1])}^2 < \infty \Big\}.$$

イロト イポト イヨト イヨト

The linear problem at the equilibrium

• Linearizing the Euler equation at $\varphi = 0$, we get, for $(\mathbf{x}, y) \in \mathbb{T}^{\kappa_0} \times [-1, 1]$

$$\{\psi_{\mathfrak{m}}, \Delta_{\omega}\breve{\varphi}\} + \{\breve{\varphi}, \psi_{\mathfrak{m}}''\} = 0 \iff (\omega \cdot \partial_{\mathsf{x}})^{2}\breve{\varphi}(\mathsf{x}, y) = \mathcal{L}_{\mathfrak{m}}\breve{\varphi}(\mathsf{x}, y)$$

(recall that $\mathcal{L}_{\mathfrak{m}} = -\partial_y^2 + Q_{\mathfrak{m}}$ and that $\psi_{\mathfrak{m}}''' = Q_{\mathfrak{m}}\psi_{\mathfrak{m}}'$);

• Family of space quasi-periodic solutions

$$\varphi(x,y) = \sum_{j=1}^{\kappa_0} A_j \cos(\lambda_{j,\mathfrak{m}}(\mathbf{E})x) \phi_{j,\mathfrak{m}}(y), \quad A_j \in \mathbb{R} \setminus \{0\}$$
(4)

with frequency vector $\omega \equiv \vec{\omega}_{\mathfrak{m}}(E) := (\lambda_{1,\mathfrak{m}}(E), ..., \lambda_{\kappa_0,\mathfrak{m}}(E)) \in \mathbb{R}^{\kappa_0} \setminus \{0\}$ (recall that $-\lambda_{1,\mathfrak{m}}^2(E), ..., -\lambda_{\kappa_0,\mathfrak{m}}^2(E) < 0$ are the negative eigenvalues of $\mathcal{L}_{\mathfrak{m}}$).

The role of the parameter **E**

• Recall the constrain $Er = \kappa_0 \left(\pi + \frac{1}{4} \right)$ and $\vec{\omega}_{\mathfrak{m}}(E) := (\lambda_{1,\mathfrak{m}}(E), ..., \lambda_{\kappa_0,\mathfrak{m}}(E));$

PROPOSITION ($\vec{\omega}_{\mathfrak{m}}(\mathbf{E})$ is Diophantine)

Let $E_2 > E_1 > (\kappa_0 + \frac{1}{4})\pi$. Given $\overline{v} \in (0,1)$ and $\overline{\tau} \gg 1$, there exists a Borel set

 $\overline{\mathcal{K}} = \overline{\mathcal{K}}(\overline{\upsilon}, \overline{\tau}) := \left\{ \mathsf{E} \in [\mathsf{E}_1, \mathsf{E}_2] \, : \, |\vec{\omega}_{\mathtt{m}}(\mathsf{E}) \cdot \ell| \geqslant \overline{\upsilon} \left\langle \ell \right\rangle^{-\overline{\tau}}, \, \forall \, \ell \in \mathbb{Z}^{\kappa_0} \backslash \{0\} \right\},$

such that $E_2 - E_2 - |\overline{\mathcal{K}}| = o(\overline{v})$.

• <u>Goal</u>: existence of a small amplitude, reversible space quasi-periodic function $\breve{\varphi}(\mathbf{x}, y)$, solution of the equation

$$\Delta_{\omega}\breve{\varphi}(\mathbf{x}, y) = F_{\rho,\varepsilon}(\psi_{\mathfrak{m}}(y) + \breve{\varphi}(\mathbf{x}, y)) - F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))$$
(5)

with frequency vector $\omega \in \mathbb{R}^{\kappa_0}$ close to $\vec{\omega}_{\mathfrak{m}}(E)$, resembling at leading order a linear solution (4) at the equilibrium, for a fixed valued of the depth $E \in \overline{\mathcal{K}}$ and for most values of an auxiliary parameter

$$\mathbf{A} \in \mathcal{J}_{\varepsilon}(\mathbf{E}) := \left[\mathbf{E} - \sqrt{\varepsilon}, \mathbf{E} + \sqrt{\varepsilon}\right].$$
(6)

THEOREM (F.-MASMOUDI-MONTALTO (2023))

Fix $\kappa_0 \in \mathbb{N}$ and $\mathfrak{m} \gg 1$. Fix also $\mathbf{E} \in \overline{\mathcal{K}}$ and $\xi = (\xi_1, \ldots, \xi_{\kappa_0}) \in \mathbb{R}_{>0}^{\kappa_0}$. Then there exist $\overline{s} > 0$, $\varepsilon_0 > 0$ such that the following hold.

1) For any $\varepsilon \in (0, \varepsilon_0)$ there exists a Borel set $\mathcal{G}_{\varepsilon} = \mathcal{G}_{\varepsilon}(E) \subset \mathcal{J}_{\varepsilon}(E)$, with $\mathcal{J}_{\varepsilon}(E)$ as in (6) and with density 1 at E when $\varepsilon \to 0$, namely $\lim_{\varepsilon \to 0} (2\sqrt{\varepsilon})^{-1} |\mathcal{G}_{\varepsilon}(E)| = 1$;

2) There exists $h_{\varepsilon} = h_{\varepsilon}(\mathbb{E}) \in H_0^3([-1,1])$, $\|h_{\varepsilon}\|_{H^3} \leq \varepsilon$, $h_{\varepsilon} = \operatorname{even}(y)$, such that, for any $\mathbb{A} \in \mathcal{G}_{\varepsilon}$, the equation (5) has a reversible, space quasi-periodic solution of the form

$$\breve{\varphi}_{\varepsilon}(\mathbf{x}, y)|_{\mathbf{x}=\widetilde{\omega}(\mathbf{A})_{X}} = h_{\varepsilon}(\mathbf{E}; y) + \varepsilon \sum_{j=1}^{\kappa_{0}} \sqrt{\xi_{j}} \cos(\widetilde{\omega}_{j}(\mathbf{A})_{X}) \phi_{j,\mathfrak{m}}(\mathbf{E}; y) + \breve{r}_{\varepsilon}(\mathbf{x}, y)|_{\mathbf{x}=\widetilde{\omega}(\mathbf{A})_{X}},$$
(7)

where $\check{r}_{\varepsilon} = \check{r}_{\varepsilon}(E, A; \mathbf{x}, \mathbf{y}) \in H^{\overline{s},3}$, with $\lim_{\varepsilon \to 0} \frac{\|\check{r}_{\varepsilon}\|_{\overline{s},3}}{\varepsilon} = 0$, and $\tilde{\omega} = (\tilde{\omega}_j)_{j=1,...,\kappa_0} \in \mathbb{R}^{\kappa_0}$, depending on A and ε , with $|\tilde{\omega}(A) - \vec{\omega}_{\mathfrak{m}}(E)| \leq C\sqrt{\varepsilon}$, with C > 0 independent of E and A. Moreover for any $\varepsilon \in [0, \varepsilon_0]$, the stream function

$$\psi_{\varepsilon}(\mathbf{x}, \mathbf{y}) = \breve{\psi}_{\varepsilon}(\mathbf{x}, \mathbf{y})|_{\mathbf{x} = \widetilde{\omega}(\mathbb{A})\mathbf{x}} = \psi_{\mathfrak{m}}(\mathbf{y}) + \breve{\varphi}_{\varepsilon}(\mathbf{x}, \mathbf{y})|_{\mathbf{x} = \widetilde{\omega}(\mathbb{A})\mathbf{x}},$$
(8)

with $\varphi_{\varepsilon}(\mathbf{x}, y)$ as in (7), defines a space quasi-periodic solution of the steady 2D Euler equation that is close to the Couette flow with estimates

$$\|\breve{\psi}_{\varepsilon} - \psi_{\mathrm{cou}}\|_{\overline{s},3} \lesssim_{\overline{s}} \frac{1}{\sqrt{E}} + \varepsilon \,, \quad \psi_{\mathrm{cou}}(y) := \frac{1}{2}y^2 \,.$$

COMMENTS ON THE MAIN RESULTS

- The shear perturbation h_ε(y) comes from the forced modification in (5) of the nonlinearities F_{p,m}(ψ) into F_{p,η}(ψ);
- The second term of φ_ε(**x**, y) in (8) retains the space quasi-periodicity of the linearized solution and is constructed with a suitable Nash-Moser iterative scheme (the eigenfunctions (φ_{j,m}(E; y))_{j∈N} depend on the parameter E!);
- Such solutions exist for fixed values of the depth E ∈ K so that ω_m(E) is Diophantine and for most values of the auxiliary parameter A ∈ J_ε(E) so that ω̃ = ω̃(A, ε) is non-resonant as well;
- Traveling quasi-periodic flows: the stream function

$$egin{aligned} \psi_{ ext{tr}}(t,x,y) &:= cy + \psi_{arepsilon}(x-ct,y) \ &= cy + \psi_{\mathfrak{m}}(y) + racklewedge(\phi,y)|_{\phi = \mathbf{x} - artheta = \widetilde{\omega}(x-ct)} \,, \quad \mathbf{x}, artheta \in \mathbb{T}^{\kappa_0} \,, \end{aligned}$$

solve the Euler equations in vorticity formulation

$$(\Omega_{\mathrm{tr}})_t + (\psi_{\mathrm{tr}})_y (\Omega_{\mathrm{tr}})_x - (\psi_{\mathrm{tr}})_x (\Omega_{\mathrm{tr}})_y = 0\,, \quad \Omega_{\mathrm{tr}} := \Delta \psi_{\mathrm{tr}}\,.$$

э

イロト イポト イヨト イヨト

• Generalized Kelvin's cat-eyes flow: The flow generated by the stream function $\check{\psi}_{\varepsilon}(\mathbf{x}, y)$ is a deformation of the near-Couette shear flow $(\psi'_{\mathfrak{m}}(y), 0)$:

$$\begin{pmatrix} u(x,y)\\ v(x,y) \end{pmatrix} = \begin{pmatrix} \psi'_{\mathfrak{m}}(y) + h'_{\varepsilon}(y)\\ 0 \end{pmatrix} + \varepsilon \sum_{j=1}^{\kappa_0} \sqrt{\xi_j} \begin{pmatrix} \cos(\widetilde{\omega}_j x) \phi'_{j,\mathfrak{m}}(y)\\ \widetilde{\omega}_j \sin(\widetilde{\omega}_j x) \phi_{j,\mathfrak{m}}(y) \end{pmatrix} + o(\varepsilon) \,.$$

 $\ensuremath{\operatorname{Figure:}}$ Streamlines of (the leading order of) a bi-periodic flow

Image: A math a math

SUMMARY OF MAIN DIFFICULTIES AND NOVELTIES

- The nonlinearity of the semilinear "elliptic" problem that we solve is actually an "unknown" of the problem and it has to be constructed in such a way that one has a near Couette, space quasi-periodic solution to the Euler equation;
- Each space quasi-periodic function $\varphi_{\varepsilon}(\mathbf{x}, y)$ solve a nonlinear PDE with nonlinearities explicitly depending of the size ε of the solution;
- The nonlinearities have finite smoothness and their derivatives lose in size;
- The unperturbed frequencies of oscillations are only implicitly defined and their non-degeneracy property relies on an asymptotic expansion for large values of the parameter. It implies that the required non-resonance conditions are not trivial to verify;
- The basis of eigenfunctions $(\phi_{j,\mathfrak{m}}(y))_{j\in\mathbb{N}}$ of the operator $\mathcal{L}_{\mathfrak{m}} = -\partial_y^2 + Q_{\mathfrak{m}}(y)$ is not the standard exponential basis and depends explicitly on the depth parameter E;
- The potential $Q_{\mathfrak{m}}(y)$ is the ruler of the scheme!

э

イロン イヨン イヨン ・

STRATEGY OF THE PROOF

• The shear equilibrium $\psi_{\mathfrak{m}}(y)$ close to Couette and its nonlinear ODE

$$\psi_{\mathfrak{m}}^{\prime\prime\prime}(y) = Q_{\mathfrak{m}}(y)\psi_{\mathfrak{m}}^{\prime}(y) \iff \psi_{\mathfrak{m}}^{\prime\prime}(y) = F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)), \ y \in I_{\rho};$$

A forced elliptic PDE for the perturbation of the shear equilibrium

$$\Delta_{\omega}\breve{\varphi}(\mathbf{x}, y) = F_{\boldsymbol{p}, \varepsilon}(\psi_{\mathfrak{m}}(y) + \breve{\varphi}(\mathbf{x}, y)) - F_{\boldsymbol{p}, \mathfrak{m}}(\psi_{\mathfrak{m}}(y));$$

A Nash-Moser scheme of hypothetical conjugation with the auxiliary parameter

$$\begin{split} \mathcal{F}(i,\alpha) &= \mathcal{F}(\omega, \mathbf{A}, \mathbf{E}, \varepsilon; i, \alpha) := \omega \cdot \partial_{\mathbf{x}} i(\mathbf{x}) - X_{\mathcal{H}_{\varepsilon,\alpha}}(i(\mathbf{x})) = \mathbf{0} \,, \\ i &= i(\mathbf{x}) = (\theta(\mathbf{x}), I(\mathbf{x}), z(\mathbf{x})) \,, \\ \mathcal{H}_{\varepsilon,\alpha} &:= \alpha \cdot I + \frac{1}{2} \big(z, \left(\begin{smallmatrix} -\mathcal{L}_{\mathfrak{m}} & \mathbf{0} \\ \mathbf{0} & \operatorname{Id} \end{smallmatrix} \right) \big)_{L^2} \\ &+ \sqrt{\varepsilon} \big(P_{\varepsilon} \big(\mathcal{A}(\theta, I, z) + \frac{1}{\sqrt{\varepsilon}} \big(\vec{\omega}_{\mathfrak{m}}(\mathbf{E}) - \vec{\omega}_{\mathfrak{m}}(\mathbf{A}) \big) \cdot I \big) \,. \end{split}$$

The potential $Q_{\mathfrak{m}}(y)$ and its properties

 $\bullet\,$ For $\mathfrak{m}\gg 1$ large enough, we define the even function

$$Q_{\mathfrak{m}}(y) = Q_{\mathfrak{m}}(\mathbf{E},\mathbf{r};y) \simeq -\mathbf{E}^{2} \left(\left(\frac{\cosh(\frac{y}{\mathbf{r}})}{\cosh(1)} \right)^{\mathfrak{m}} + 1 \right)^{-1},$$

such that, in the limit $\mathfrak{m} \to \infty$, it uniformly approaches the classical potential well (on compact intervals excluding $\{|y| = r\}$)

$$Q_{\mathfrak{m}}(y) = Q_{\mathfrak{m}}(\mathsf{E},\mathsf{r};y) \stackrel{\mathfrak{m}\to\infty}{\to} Q_{\infty}(\mathsf{E},\mathsf{r};y) := \begin{cases} 0 & |y| > \mathsf{r}, \\ -\mathsf{E}^2 & |y| < \mathsf{r}; \end{cases}$$

LEMMA (ESTIMATES FOR $Q_{\mathfrak{m}}(y)$)

We have

$$\sup_{\mathfrak{m}\gg 1} \|Q_{\mathfrak{m}}\|_{L^{\infty}([-1,1])} \lesssim \|Q_{\infty}\|_{L^{\infty}([-1,1])} \lesssim E^{2}.$$

Moreover, for any fixed $\gamma > 0$ sufficiently small, we have, for any $n \in \mathbb{N}_0$,

$$|\partial_{y}^{n}(Q_{\mathfrak{m}}(y) - Q_{\infty}(y))| \to 0 \quad \text{uniformly in } y \in [-1,1] \setminus (B_{\gamma}(\mathbf{r}) \cup B_{\gamma}(-\mathbf{r}))$$

and
$$\|Q_{\mathfrak{m}} - Q_{\infty}\|_{L^{p}([-1,1])} \rightarrow 0$$
 for any $p \in [1,\infty)$.

How to construct the nonlinearity $F_{0,\mathfrak{m}}(\psi)$

- We determine the even shear $\psi_{\mathfrak{m}}(y)$ by solving $\psi_{\mathfrak{m}}''(y) = Q_{\mathfrak{m}}(y)\psi_{\mathfrak{m}}'(y)$;
- Since $Q_{\mathfrak{m}}(y)$ and $\psi_{\mathfrak{m}}(y)$ are even, then (recall that $\psi'_{\mathfrak{m}}(y_{1,\mathfrak{m}}) = 0$)

$$\mathcal{Q}_{\mathfrak{m}}(y) = \mathcal{K}_{0,\mathfrak{m}}(y^2), \quad \psi_{\mathfrak{m}}(y) = \mathcal{G}_{0,\mathfrak{m}}(y^2), \quad 0 \leqslant |y| < \mathfrak{y}_{1,\mathfrak{m}},$$

where $K_{0,\mathfrak{m}}, G_{0,\mathfrak{m}} \in \mathcal{C}^{\infty}$; • $\psi_{\mathfrak{m}}(y)$ is invertible as a function of y^2 until reaches $|y| = y_{1,\mathfrak{m}}$:

$$\left\{ \begin{array}{ll} \psi'_{\mathfrak{m}}(y) \neq 0, & 0 < |y| < y_{1,\mathfrak{m}} \\ \psi''_{\mathfrak{m}}(0) \neq 0, \end{array} \right\} \Rightarrow G_{0,\mathfrak{m}}(z) \text{ is invertible for } 0 \leqslant z < \sqrt{y_{1,\mathfrak{m}}};$$

• We define $F_{0,\mathfrak{m}}(\psi)$ as solution of the Cauchy problem

$$\begin{cases} F'_{0,\mathfrak{m}}(\psi) = K_{0,\mathfrak{m}}\left(G^{-1}_{0,\mathfrak{m}}(\psi)\right), & \psi \in \psi_{\mathfrak{m}}\left(\left[0, y_{1,\mathfrak{m}} - \gamma_{0}\right]\right), \\ F_{0,\mathfrak{m}}(\psi_{\mathfrak{m}}(0)) = \psi''_{\mathfrak{m}}(0). \end{cases}$$

How to construct the nonlinearity $F_{1,\mathfrak{m}}(\psi)$

• $Q_{\mathfrak{m}}(y)$ and $\psi_{\mathfrak{m}}(y)$ are not even-symmetric with respect to $y = y_{1,\mathfrak{m}}$, BUT they are close to be: we can write, for $||y| - y_{1,\mathfrak{m}}| < r_{1,\pm}$, with $r_{1,-} := y_{1,\mathfrak{m}} - y_{0,\mathfrak{m}}$ and $r_{1,+} := y_{2,\mathfrak{m}} - y_{1,\mathfrak{m}}$.

$$\begin{split} & \mathcal{Q}_{\mathfrak{m}}(y) = \mathcal{K}_{1,\mathfrak{m},\pm}\big((|y| - \mathfrak{y}_{1,\mathfrak{m}})^2\big) \,, \quad \mathcal{K}_{1,\mathfrak{m},\pm} \in \mathcal{C}^{\mathcal{S}}(B_{\sqrt{\mathfrak{r}_{1,\pm}}}(0)) \,, \\ & \psi_{\mathfrak{m}}(y) = \mathcal{G}_{1,\mathfrak{m},\pm}\big((|y| - \mathfrak{y}_{1,\mathfrak{m}})^2\big) \,, \quad \mathcal{G}_{1,\mathfrak{m},\pm} \in \mathcal{C}^{\mathcal{S}+1}(B_{\sqrt{\mathfrak{r}_{1,\pm}}}(0)) \,; \end{split}$$

• In their regions (where $\psi'_{\mathfrak{m}}(y)$ does not change sign), both $G_{1,\mathfrak{m},-}(z)$ and $G_{1,\mathfrak{m},+}(z)$ are invertible (also here, $\psi''_{\mathfrak{m}}(y_{1,\mathfrak{m}}) \neq 0$).

• In the region $0 < |y| \leqslant y_{1,\mathfrak{m}}$, we consider

$$\begin{cases} F'_{0,\mathfrak{m}}(\psi) = \mathcal{K}_{1,\mathfrak{m},-}(G_{1,\mathfrak{m},-}^{-1}(\psi)), & \psi \in \psi_{\mathfrak{m}}([\gamma_{1,-}, y_{1,\mathfrak{m}}]), \\ F_{0,\mathfrak{m}}(\psi_{\mathfrak{m}}(y_{1,\mathfrak{m}})) = \psi''_{\mathfrak{m}}(y_{1,\mathfrak{m}}), \end{cases}$$

which has to coincide with the $F_{0,\mathfrak{m}}(\psi)$ constructed before, because

$$F'_{0,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)) = Q_{\mathfrak{m}}(y) \quad \forall |y| \in [0, y_{1,\mathfrak{m}}]$$

 $\bullet\,$ In the region ${\tt y}_{1,\mathfrak{m}}\leqslant |y|<{\tt y}_{2,\mathfrak{m}},$ we define ${\it F}_{1,\mathfrak{m}}$ as the solution of

$$\begin{cases} F'_{1,\mathfrak{m}}(\psi) = K_{1,\mathfrak{m},+} \left(G^{-1}_{1,\mathfrak{m},+}(\psi) \right), & \psi \in \psi_{\mathfrak{m}}([\mathfrak{y}_{1,\mathfrak{m}},\mathfrak{y}_{2,\mathfrak{m}}-\gamma_{1,+}]), \\ F_{1,\mathfrak{m}}(\psi_{\mathfrak{m}}(\mathfrak{y}_{1,\mathfrak{m}})) = \psi''_{\mathfrak{m}}(\mathfrak{y}_{1,\mathfrak{m}}), \end{cases}$$

• Thanks to the "approximate local evenness" we have C^{S+1} -continuity when $\psi = \psi_{\mathfrak{m}}(y)$ at $y = \pm y_{1,\mathfrak{m}}$: for any n = 0, 1, ..., S + 1,

$$\lim_{|y|\to y_{1,\mathfrak{m}}^-} \partial_y^n(F_{0,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))) = \lim_{|y|\to y_{1,\mathfrak{m}}^+} \partial_y^n(F_{1,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))) = \psi_{\mathfrak{m}}^{(n+2)}(y_{1,\mathfrak{m}}).$$

The issue nonlinearity vs. perturbation

• **<u>Recall</u>**: If we search for $\psi(x, t)$ such that, for any $p = 0, 1, ..., \kappa_0$

$$\psi_{\mathfrak{m}}''(y) = F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)) \iff \Delta\psi(x,y) = F_{\rho,\mathfrak{m}}(\psi(x,y)), \quad (x,y) \in \mathbb{R} \times I_{\rho}$$

then we immediately lose continuity at $\{|y| = y_{p,m}\}$: in general

$$\lim_{|y|\to y_{\rho,\mathfrak{m}}^{-}} F_{\rho-1,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)+\varphi(x,y))\neq \lim_{|y|\to y_{\rho,\mathfrak{m}}^{+}} F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)+\varphi(x,y))$$

unless $\varphi(x, \pm y_{p,\mathfrak{m}}) = 0$ for any $x \in \mathbb{R}$ (too strict!)

• Key idea: replace $F_{p,\mathfrak{m}}$ with a perturbed version to "accomodate" the perturbation $\varphi(x, y) = O(\varepsilon)$:

$$F_{\rho,\eta}(\psi) = \begin{cases} \frac{1}{2} (F_{\rho-1,\mathfrak{m}}(\psi) + F_{\rho,\mathfrak{m}}(\psi)) = F_{\rho-1,\eta}(\psi) & |\psi - \psi_{\mathfrak{m}}(\mathbf{y}_{\rho,\mathfrak{m}})| \leq \eta, \\ F_{\rho,\mathfrak{m}}(\psi) & |\psi - \psi_{\mathfrak{m}}(\mathbf{y}_{\rho,\mathfrak{m}})| \geq 2\eta \text{ and} \\ |\psi - \psi_{\mathfrak{m}}(\mathbf{y}_{\rho+1,\mathfrak{m}})| \geq 2\eta, \\ \frac{1}{2} (F_{\rho+1,\mathfrak{m}}(\psi) + F_{\rho,\mathfrak{m}}(\psi)) = F_{\rho+1,\eta}(\psi) & |\psi - \psi_{\mathfrak{m}}(\mathbf{y}_{\rho+1,\mathfrak{m}})| \leq \eta, \end{cases}$$

where $\eta = \varepsilon^{1/S} \gg \varepsilon \in (0, 1)$, with smooth connections in the remaining regions, so that $F_{p,\eta}(\psi) \to F_{p,\mathfrak{m}}(\psi)$ uniformly as $\eta \to 0$.

FIGURE: Where the nonlinearities $F_{\rho,\eta}$ are constructed

・ロト ・回ト ・ヨト

Spectral analysis of $\mathcal{L}_{\mathfrak{m}} = -\partial_{y}^{2} + Q_{\mathfrak{m}}(y)$

PROPOSITION

The Schrödinger operator $\mathcal{L}_{\mathfrak{m}} = -\partial_y^2 + \mathcal{Q}_{\mathfrak{m}}(y)$ is self-adjoint in $L_0^2([-1,1])$ on $D(\mathcal{L}_{\mathfrak{m}}) := H_{0,\mathrm{even}}^1[-1,1]$ with a countable L^2 -basis $(\phi_{j,\mathfrak{m}}(y))_{j\in\mathbb{N}} \subset \mathcal{C}^{\infty}[-1,1]$ corresponding to the eigenvalues $(\mu_{j,\mathfrak{m}})_{j\in\mathbb{N}}$. Moreover, there exists $\overline{\mathfrak{m}} = \overline{\mathfrak{m}}(\mathsf{E}_1,\mathsf{E}_2,\kappa_0) \gg 1$ large enough such that, for any $\mathfrak{m} \ge \overline{\mathfrak{m}}$,

$$\mu_{j,\mathfrak{m}} = \begin{cases} -\lambda_{j,\mathfrak{m}}^2 \in (-\mathbf{E}^2, \mathbf{0}) & j = 1, ..., \kappa_0, \\ \lambda_{j,\mathfrak{m}}^2 > \mathbf{0} & j \geqslant \kappa_0 + 1. \end{cases}$$

In particular, for any $j = 1, ..., \kappa_0$, we have that $\lambda_{j,\mathfrak{m}}$ is close to $\lambda_{j,\infty}$, with the latter being the *j*-th root out of κ_0 in the region $\lambda \in (0, \mathbb{E})$ of the equation

$$\mathfrak{F}(\lambda):=\lambda\cos\left(r\sqrt{\mathtt{E}^2-\lambda^2}\right)\coth((1-\mathtt{r})\lambda)-\sqrt{\mathtt{E}^2-\lambda^2}\sin\left(r\sqrt{\mathtt{E}^2-\lambda^2}\right)=0\,.$$

LEMMA

For any $j = 1, ..., \kappa_0$, we have the asymptotic expansion

$$\begin{split} \lambda_{j,\infty}(\mathbf{E}) &= \mathbf{E}\cos\left(\pi\left(\alpha_0(j) + \alpha_2(j)\beta_j(\mathbf{E})^2 + o(\beta_j(\mathbf{E})^3)\right)\right), \ \mathbf{E} \to +\infty, \\ \beta_j(\mathbf{E}) &:= \exp\left(\left((\kappa_0 + \frac{1}{4})\pi - \mathbf{E}\right)\cos(\pi\alpha_0(j))\right), \quad \sin(\pi\alpha_0(j)) = \frac{j - \frac{1}{2} - \alpha_0(j)}{\kappa_0 + \frac{1}{4}}. \end{split}$$

ヘロン ヘロン ヘビン ヘ

Thank you for your attention!

Luca Franzoi (NYU Abu Dhabi)

Space Quasi-periodic near Couette

SCHOOL/WORKSHOP ON WAVE DYNAM

・ロト ・回ト ・ヨト ・ヨト