Quasi-periodic steady invariant structures in incompressible fluids (joint work with N.Masmoudi and R. Montalto)

Luca Franzoi (NYU Abu Dhabi)

School/Workshop on Wave Dynamics: Turbulent vs Integrable Effects ICTP, Trieste - August 30th, 2023

Luca Franzoi (NYU Abu Dhabi) [Space Quasi-periodic near Couette](#page-34-0) School/Workshop on Wave Dynamics: Turbulent vs Integrable Effects ICTP, Trieste - August 30th, 2023 1 / 35

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Outline

1 INTRODUCTION AND INFORMAL RESULT

- ² [Lin & Zeng result for periodic steady flows](#page-6-0)
- ³ [Setup for space quasi-periodic steady flows](#page-12-0)
- ⁴ [Main Theorem](#page-19-0)
- **5 SCHEME OF THE PROOF AND MAIN DIFFICULTIES**
- ⁶ [Some details of the proofs](#page-27-0)

 QQ

イロト イ押 トイラト イラト

Euler equation in the channel

- Domain: two-dimensional finite channel $\mathbb{R} \times [-1, 1]$;
- Stationary Euler equation in vorticity-stream function formulation

$$
\{\psi, \Delta \psi\} := \psi_x (\Delta \psi)_y - \psi_y (\Delta \psi)_x = 0; \qquad (1)
$$

- **•** Impermeability condition at the boundary: $\psi_x = 0$ on $\{y = \pm 1\}$;
- Velocity field: $(u(x, y), v(x, y)) := \nabla^{\perp} \psi(x, y) = (\partial_y \psi(x, y), -\partial_x \psi(x, y)).$

Informal Theorem

Let $\kappa_0 \in \mathbb{N}$. There exist $\varepsilon_0 > 0$ small enough and a family of stationary solutions $(\psi_\varepsilon(x,y)=\breve{\psi}_\varepsilon(\mathbf{x},y)|_{\mathbf{x}=\widetilde{\omega} x})_{\varepsilon\in[0,\varepsilon_0]}$ of the Euler equation (1) in the finite channel $(x, y) \in \mathbb{R} \times [-1, 1]$ that are quasi-periodic in the horizontal direction $x \in \mathbb{R}$ for s ome frequency vector $\widetilde{\omega}\in \mathbb{R}^{\kappa_0}$, with $\mathbf{x}=\widetilde{\omega}$ x $\in \mathbb{T}^{\kappa_0}$. Such family bifurcates from a shear equilibrium $\psi_{\mathfrak{m}}(y)$ and can be chosen to be arbitrarily close to the Couette flow $\psi_{\text{cou}}(y) := \frac{1}{2}y^2$ in $H^s_{\mathbf{x}}H^{7/2-}_y(\mathbb{T}^{\kappa_0}\times[-1,1])$, with $s>0$ sufficiently large.

KO KARK KE KIEK E KORO

THE HYDRODYNAMICS (IN)STABILITY PROBLEM

Figure: Kelvin-Helmholtz instability for two layered shear flows (credits: Lawrence et at. (1991) - Cushman-Roisin (2005))

 Ω

K ロ ⊁ K 倒 ≯ K 差 ≯ K

LITERATURE OVERVIEW: INVISCID DYNAMICS around shear flows

- **Linear and nonlinear damping for Vlasov-Poisson** [Mouhot & Villani (2011)]
- **Linear inviscid damping for Euler close to Couette** [Kelvin (1887), Orr (1907), **Lin & Zeng** (2011)];
- **Nonlinear inviscid damping** [Bedrossian & Masmoudi (2015), Deng & Masmoudi (2018), Ionescu & Jia (2020)];
- **Stratified fluids with flows close to Couette** [Yang & Lin (2018), Bianchini, Coti-Zelati & Dolce (2020)];
- **Compressible fluids** [Antonelli, Dolce & Marcati (2021)];
- **Linear inviscid damping for other shear flows** [Zillinger (2017)];
- **Oscillatory stationary flows** [Li & Lin (2011), **Lin & Zeng** (2011), Coti-Zelati, Elgindi & Widmayer (2020)].

 $E = \Omega Q$

メロメ メ御 メメ きょ メ ヨメー

Literature overview: quasi-periodic flows

Time quasi-periodic solution in fluid dynamics

- § **2D water waves equation** [Berti & Montalto (2017), Baldi, Berti, Haus & Montalto (2018), Berti, F. & Maspero (2020,2021), Feola & Giuliani (2020)];
- § **Vortex patches in active scalar equations** [Berti, Hassainia & Masmoudi (2022), Hmidi & Roulley (2021), Hassainia, Hmidi & Masmoudi (2021), Hassainia & Roulley (2022), Hassainia, Hmidi & Roulley (2023), Roulley (2022), Garcia, Hassainia & Roulley (2023), Gómez-Serrano, Ionescu & Park (2023)];
- § **Forced Euler and Navier-Stokes** [Baldi & Montalto (2021), Montalto (2021), F. & Montalto (2022)];
- § **Non-resonant Euler flows** [Crouseilles & Faou (2013), Enciso, Peralta-Salas & Torres de Lizaur (2022)];

Space quasi-periodic and "spatial dynamics" in PDE

- § **Space bi-periodic analysis** [Scheurle (1983), Iooss & Los (1990), Iooss & Mielke (1991), Bridges & Rowland (1994), Bridges & Dias (1996)];
- § **Quasi-periodic for semilinear elliptic PDE** [Valls (2006), Poláčic & Valdebenito (2017)].
- § **Remark!** In these results and in ours, **space quasi-periodic** means quasi-periodic in **ONE selected** space direction!

Germany Co $2Q$

イロメ イ団メ イミメ イミメー

LIN & ZENG $\frac{3}{2}$ -THRESHOLD FOR PERIODIC FLOWS

Theorem (Lin & Zeng (ARMA, '11))

Let $T > 0$ be a fixed period. The following hold:

 \bullet $s \in [0, \frac{3}{2})$: For any $\varepsilon > 0$, there exists $\psi_{\varepsilon}(x, y)$ solution of [\(1\)](#page-2-1) such that ψ_{ε} has minimal x -period T ,

$$
\|\Delta\psi_{\varepsilon}-1\|_{H^{s}((0,T)\times(-1,1))}<\varepsilon,
$$

and $-\partial_x\psi_{\varepsilon}(x, y)$ is non-trivial in $\mathbb{R} \times [-1, 1]$;

 \bullet s > $\frac{3}{2}$: There exists $\varepsilon_0 > 0$ such that, for any traveling solution $\psi(x - ct, y)$, $c \in \mathbb{R}$, of the Euler equation $\partial_t \Delta \psi + \{\psi, \Delta \psi\} = 0$ on $\mathbb{R} \times [-1, 1]$ with x-period T and satisfying

$$
\|\Delta\psi-1\|_{H^s((0,T)\times(-1,1))}<\varepsilon_0,
$$

we must have $\partial_x\psi(x - ct, y) \equiv 0$ in the whole channel $\mathbb{R} \times [-1, 1]$ for all times $t \in \mathbb{R}$.

Important consequences:

- When $s > \frac{3}{2}$, the non-existence of non-trivial invariant structures is a hint for the nonlinear damping for inviscid flows close to Couette in H^s ;
- When $s \in [0, \frac{3}{2})$, there exist inviscid flows close to Couette in H^s that cannot damp down to a shear.

KO KARK KE KIEK E KORO

Lin-Zeng construction of periodic solutions

Starting point: a particular (monotone) shear flow $(A > 0, 0 < \gamma \ll 1)$

$$
U_{\gamma,A}(y)=y+A\gamma^2\mathrm{erf}\left(\tfrac{y}{\gamma}\right):=y+\tfrac{2}{\sqrt{\pi}}A\gamma^2\int_0^{\frac{y}{\gamma}}e^{-s^2}\,\mathrm{d} s\,,\quad y\in[-1,1]\,,
$$

with associated stream function $\psi_{\gamma,A}(y)$ (i.e. $\psi_{\gamma,A}'=U_{\gamma,A})$ satisfying

 $\psi_{\gamma,A}'' = \mathit{F}(\psi_{\gamma,A})\,,\quad$ for some $\,F:\mathbb{R}\to\mathbb{R}\,$ inherited from $\,\psi_{\gamma,A}\,;$

• Goal: Construct the steady stream function $\psi(x, y) = \psi_{\gamma, A}(y) + \phi(x, y)$, periodic in x with period $2\pi/\alpha$, that solves

 $\Delta\psi(x, y) = F(\psi(x, y))$ with the same nonlinearity $F : \mathbb{R} \to \mathbb{R}$; (2)

if [\(2\)](#page-7-0) is fulfilled, then $\psi(x, y)$ is a solution of the Euler equation [\(1\)](#page-2-1)!

• When we linearize [\(2\)](#page-7-0) around $\psi_{\gamma,A}$, we get

$$
\partial_x^2 \phi = -\partial_y^2 \phi + F'(\psi_{\gamma,A})\phi + o(|\phi|^2) \quad \text{and} \quad F'(\psi_{\gamma,A}) = \frac{\psi_{\gamma,A}^{\prime\prime\prime}}{\psi_{\gamma,A}^{\prime}} = \frac{U_{\gamma,A}^{\prime\prime}}{U_{\gamma,A}} \dots
$$

GB 11 QQ

メロメ メ御 メメ きょ メ ヨメー

WHAT LEADS TO PERIODIC OSCILLATIONS

LEMMA

Let $\mathcal{L}_{\gamma,A} : H^2(-1,1) \to L^2(-1,1)$ be the Schrödinger operator

$$
\mathcal{L}_{\gamma,A} = -\partial^2_{y} + Q_{\gamma,A}(y)\,, \quad Q_{\gamma,A}(y) := F'(\psi_{\gamma,A}(y)) := \frac{\nu_{\gamma,A}''(y)}{\nu_{\gamma,A}(y)}\,,
$$

with zero Dirichlet boundary conditions at $\{y = \pm 1\}$. For any fixed $A > \frac{1}{2}$, for $\gamma > 0$ small enough, the operator $\mathcal{L}_{\gamma,A}$ has a (unique) $\mathsf{negative}$ eigenvalue $-\beta_{\gamma,A}^2.$ The remaining part of the spectrum consists of positive eigenvalues.

• Key property: in the limit $\gamma \rightarrow 0$, the potential

$$
Q_{\gamma,A}(y)=-4A\frac{1}{\gamma\sqrt{\pi}}e^{-(\frac{y}{\gamma})^2}\left(1+A\gamma\frac{\gamma}{y}\mathrm{erf}\left(\frac{y}{\gamma}\right)\right)^{-1}\stackrel{\gamma\to 0}{\to}-4A\delta_0(y)
$$

in the sense of distributions, and the delta potential carries one negative eigenvalue for the Schrödinger operator

$$
\mathcal{L}_{0,A} := -\partial_y^2 - 4A\delta_0(y) .
$$

 $2Q$

メロトメ 倒 トメ ミトメ ミトー

THE BIFURCATION ARGUMENT IN LIN & ZENG

PROPOSITION

Assume $U \in C^5[-1,1]$, monotone in $[-1,1]$ and with $U'(0) > 0$, $U''(0) = 0$. Define

$$
\mathcal{L} := -\partial_y^2 + Q(y) : H^2(-1,1) \to L^2(-1,1) \,, \quad Q(y) = \frac{U''(y)}{U(y) - U(0)} \,,
$$

acting with zero Dirichlet conditions at $\{y = \pm 1\}$. If $\mathcal L$ has a negative eigenvalue $-k_0^2$ with positive eigenfunction $\phi_0(y)$, then there exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in (0, \varepsilon_0)$, there exists a steady solution $(u_{\varepsilon}(x, y), v_{\varepsilon}(x, y))$ to the Euler equation, periodic in x with minimal period $T_\varepsilon \to \frac{2\pi}{k_0}$ as $\varepsilon \to 0$, such that

$$
\Delta \psi_{\varepsilon} = \mathcal{F}(\psi_{\varepsilon}), \quad \|\Delta \psi_{\varepsilon} - U'(y)\|_{H^2} = \varepsilon
$$

and the vector field near $\{y = 0\}$ has leading order in $\varepsilon \to 0$ given by

$$
\left\{\n\begin{array}{l}\nu_{\varepsilon}(x,y) \sim U(y) + \varepsilon \phi_0'(y) \cos(\frac{2\pi}{T_{\varepsilon}}x) \\
v_{\varepsilon}(x,y) \sim -\varepsilon \frac{2\pi}{T_{\varepsilon}} \phi_0(y) \sin(\frac{2\pi}{T_{\varepsilon}}x)\n\end{array}\n\right.
$$
\n**(Kelvin's cat-eyes flow).**

イロト (倒) イミトイ

Figure: Streamlines of the Kelvin–Stuart cat's-eye flow (source: Majda-Bertozzi book)

 $2Q$

Main steps of the proof:

Construction of a nonlinearity $F \in C_0^2(\mathbb{R})$, $[\max \psi_0, \min \psi_0] \subseteq \text{spt}(f)$, where $\phi_0' = U$, by solving the Cauchy problem (assuming $U(y)$ odd symmetric!)

$$
\begin{cases}\nF'(z) = Q(\psi_0^{-1}(z)) & \text{for } F(\psi_0(y)) = \psi_0''(y), \\
F(\psi_0(0)) = \psi_0''(0)\n\end{cases}
$$

• Look for a stream function of the form $\psi(x, y) = \psi_0(y) + \phi(\xi, y)|_{\xi = \alpha x}$ with $\phi(\xi, y)$ 2 π -periodic in x, such that

$$
\begin{cases}\n\Delta \psi = F(\psi), \\
\psi(x, \pm 1) = \psi_0(\pm 1) \n\end{cases}\n\longrightarrow\n\begin{cases}\n\alpha^2 \partial_{\xi}^2 \phi + \partial_{y}^2 \phi - (F(\phi + \psi_0) - F(\psi_0)) = 0, \\
\phi(\xi, \pm 1) = 0.\n\end{cases}
$$

Apply Crandall-Rabinowitz Theorem with the nonlinear functional

$$
\mathcal{F}(\phi,\alpha^2) := \alpha^2 \partial_{\xi}^2 \phi + \partial_y^2 \phi - \big(\mathcal{F}(\phi + \psi_0) - \mathcal{F}(\psi_0) \big) = 0,
$$

bifurcating from the kernel $\text{Ker}(\mathcal{G}) := \{\cos(\xi)\phi_0(y)\}\$ of the linearized operator

$$
\mathcal{G} := d_{\phi} \mathcal{F}(0, k_0^2) := k_0^2 \partial_{\xi}^2 + \partial_{y}^2 - F'(\psi_0) = k_0^2 \partial_{\xi}^2 - \mathcal{L}.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

WHAT LEADS TO SPACE QUASI-PERIODIC FLOWS

Key object: a **well** prescribed analytic potential $Q_m(y)$, even in y, depending on a parameter $m \gg 1$ such that, in the limit $m \rightarrow \infty$, it uniformly approaches the classical potential well

$$
\mathcal{Q}_{\mathfrak{m}}(y) = \mathcal{Q}_{\mathfrak{m}}(E, r; y) \stackrel{\mathfrak{m} \rightarrow \infty}{\longrightarrow} \mathcal{Q}_{\infty}(E, r; y) := \begin{cases} 0 & |y| > r \,, \\ -E^2 & |y| < r \,; \end{cases}
$$

Constrain: the depth $E > 1$ and the width $r \in (0, 1)$ are related by

$$
\mathbf{Er} = \kappa_0(\pi + \tfrac{1}{4}),
$$

for a given $\kappa_0 \in \mathbb{N}$, **fixed from the very beginning**, which counts the exact \min number of negative eigenvalues $-\lambda^2_{1,\mathfrak{m}}(\mathtt{E}),...,-\lambda^2_{\kappa_0,\mathfrak{m}}(\mathtt{E}) < 0$ for the operator

$$
\mathcal{L}_{\mathfrak{m}}:=-\partial_y^2+Q_{\mathfrak{m}}(y)\,,\quad\text{with eigenfunctions}\quad \mathcal{L}_{\mathfrak{m}}\phi_{j,\mathfrak{m}}=-\lambda_{j,\mathfrak{m}}^2\phi_{j,\mathfrak{m}}\,,
$$

with Dirichlet boundary conditions on $[-1, 1]$. The rest of the spectrum $(\lambda_{j,m}^2(E))_{j\geqslant \kappa_0+1}$ is strictly positive.

 QQ

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

THE SHEAR EQUILIBRIUM

• We define the stream function $\psi_{\mathfrak{m}}(y)$ as the solution of the linear ODE

$$
\psi_{\mathfrak{m}}'''(y) = Q_{\mathfrak{m}}(y)\psi_{\mathfrak{m}}'(y), \quad y \in [-1,1]. \tag{3}
$$

• When $|y| > r$, $\psi_m(y)$ behaves as the Couette flow, with

$$
\psi_{\mathfrak{m}}'(y)\overset{\mathfrak{m}\rightarrow\infty}{\rightarrow} y-A_{\rm out}\mathrm{sgn}(y)\,,\quad |y|>\mathtt{r}\,;
$$

• When $|y| < r$, $\psi_m(y)$ ceases to be monotone and exhibits oscillations, with

$$
\psi_{\mathfrak{m}}'(y)\overset{\mathfrak{m}\rightarrow\infty}{\rightarrow}\mathcal{A}_{\text{in}}\,\text{sin}(Ey)\,,\quad |y|<\mathtt{r}\,.
$$

In particular, $\psi_{\mathfrak{m}}(y)$ has exactly $2\kappa_0 + 1$ critical points

$$
0=:y_{0,m}<|y_{1,m}|<...<|y_{\kappa_0,m}|
$$

PROPOSITION (PROXIMITY TO THE COUETTE FLOW)

There exists an even stream function $\psi_{\mathfrak{m}}(y)$, solution to [\(3\)](#page-13-0), such that

$$
\|\psi_{\mathfrak{m}} - \psi_{\mathrm{cou}}\|_{H^3[-1,1]} \lesssim \sqrt{r} \text{ and } \|\psi_{\mathfrak{m}} - \psi_{\mathrm{cou}}\|_{H^4[-1,1]} \gtrsim \frac{1}{\sqrt{r}}.
$$

FIGURE: A (non-scaled) picture of the stream function $\psi_m(y)$, with $\kappa_0 = 2$

Þ

 $2Q$

メロトメ 伊 トメ ミトメ ミト

THE (UNPERTURBED) NONLINEARITY

• We write
$$
[-1,1] = \bigcup_{p=0,1,\ldots,\kappa_0} I_p
$$
, where

 $I_p := \{ y \in \mathbb{R} : y_{p,m} \leqslant |y| \leqslant y_{p+1,m} \}, \quad p = 1, ..., \kappa_0, \quad y_{\kappa_0+1,m} := 1 \,.$

The stream function $\psi_{\mathfrak{m}}(y)$ solves **locally** on each set I_p a second-order nonlinear ODE.

Theorem (Local nonlinearities)

Let $S \in \mathbb{N}$ and let $\mathfrak{m} \geqslant \overline{\mathfrak{m}}(\mathbf{r}) \geqslant 1$. For any $p = 0, 1, ..., \kappa_0$, there exists a nonlinear function $F_{p,m} \in C_0^{S+1}(\mathbb{R})$, $\psi \to F_{p,m}(\psi)$, such that

 $(\partial_{\psi}F_{p,m})(\psi_m(y)) = Q_m(y), y \in [-1,1] \Rightarrow \psi_m''(y) = F_{p,m}(\psi_m(y)), y \in I_p.$

We have C^{S+1} -continuity at $\psi = \psi_m(y)$ at the critical points $y = \pm y_{p,m}$, $p = 1, ..., k_0$, meaning that, for any $n = 0, 1, ..., S + 1$,

$$
\lim_{|y| \to y_{\rho,\mathfrak{m}}^-} \partial_y^n(F_{\rho-1,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))) = \lim_{|y| \to y_{\rho,\mathfrak{m}}^+} \partial_y^n(F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))) = \psi_{\mathfrak{m}}^{(n+2)}(y_{\rho,\mathfrak{m}}).
$$

È.

 298

メロトメ 伊 トメ ミトメ ミト

FIGURE: Picture of the stream function $\psi_m(y)$ close to the critical point $y_{p,m}$.

 $2Q$

KOX K图 K K B

Around the shear equilibrium

• We search for nontrivial stream functions close to $\psi_{\mathfrak{m}}(\mathbf{y})$ of the form

 $\psi(x, y) = \psi_m(y) + \varphi(x, y)$, with $\varphi(x, y)$ space quasi-periodic in $x \in \mathbb{R}$

DEFINITION

Let $\kappa_0 \in \mathbb{N}$. A function $\mathbb{R} \ni x \mapsto u(x)$ is **quasi-periodic** if there exist a function $\mathbb{T}^{\kappa_0} \ni \mathbf{x} \mapsto \breve{\iota}(\mathbf{x})$ and a frequency vector $\omega \in \mathbb{R}^{\kappa_0} \backslash \{0\}$ such that

$$
u(x) = \breve{u}(x)|_{x=\omega x}, \quad \text{with} \quad \omega \cdot \ell \neq 0 \quad \forall \ell \in \mathbb{Z}^{\kappa_0} \backslash \{0\}.
$$

- $\underline{Domain:} \mathcal{D} := \mathbb{T}^{\kappa_0} \times [-1,1] \hookrightarrow \mathbb{R} \times [-1,1], \ \mathbb{T}^{\kappa_0} := (\mathbb{R}/2\pi\mathbb{Z})^{\kappa_0};$
- **•** Equation for the perturbation: having $\varphi(x, \pm 1) = 0$,

$$
\{\psi, \Delta \psi\} = 0 \xrightarrow{\psi = \psi_{\mathfrak{m}}(y) + \varphi} \{\psi_{\mathfrak{m}}, \Delta_{\omega} \breve{\varphi}\} + \{\breve{\varphi}, \psi''_{\mathfrak{m}}\} + \{\breve{\varphi}, \Delta_{\omega} \breve{\varphi}\} = 0
$$

where

$$
\Delta := \partial_x^2 + \partial_y^2 \ \ \leadsto \ \ \Delta_{\omega} := (\omega \cdot \partial_x)^2 + \partial_y \, .
$$

E

 QQ

メロトメ 伊 トメ ミトメ ミト

If we search for $\psi(x, t)$ such that, for any $p = 0, 1, ..., \kappa_0$

$$
\psi_{\mathfrak{m}}''(y) = F_{p,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)) \quad \text{and} \quad \Delta \psi(x,y) = F_{p,\mathfrak{m}}(\psi(x,y)), \quad (x,y) \in \mathbb{R} \times \mathbb{I}_p
$$

then we immediately lose continuity at $\{|y| = y_{p,m}\}$: in general

$$
\lim_{|y| \to y_{p,\mathfrak{m}}} F_{p-1,\mathfrak{m}}(\psi_{\mathfrak{m}}(y) + \varphi(x,y)) \neq \lim_{|y| \to y_{p,\mathfrak{m}}^+} F_{p,\mathfrak{m}}(\psi_{\mathfrak{m}}(y) + \varphi(x,y))
$$

unless $\varphi(x, \pm y_{p,m}) = 0$ for any $x \in \mathbb{R}$ (too strict!)

Key idea: if you look for pertubations $\varphi(x, y) = O(\varepsilon)$, perturb the nonlinearities as well!

$$
F_{p,m}(\psi) \ \ \leadsto \ F_{p,\varepsilon}(\psi) \,, \quad \varepsilon \in (0,1) \,;
$$

Properties that we want:

- $▶$ It is perturbative: $F_{p,\varepsilon}(\psi) \to F_{p,m}(\psi)$ uniformly as $\varepsilon \to 0$;
- \triangleright Away from critical values, $F_{p,\varepsilon}$ essentially equals to $F_{p,m}$;
- **Fi** There is "room enough" to "accomodate" the perturbation $\varphi(x, y)$ and reobtain continuity everywhere.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

THE EQUATION THAT WE SOLVE

• Equation for the perturbation: the starting point is Euler:

$$
\{\check{\psi}, \Delta_{\omega}\check{\psi}\} = 0 \quad \stackrel{\psi = \psi_{\mathfrak{m}}(y) + \varphi}{\sim} \quad \{\psi_{\mathfrak{m}}, \Delta_{\omega}\check{\varphi}\} + \{\check{\varphi}, \psi''_{\mathfrak{m}}\} + \{\check{\varphi}, \Delta_{\omega}\check{\varphi}\} = 0.
$$

The corresponding "elliptic" equation is (recalling $\psi_{\mathfrak{m}}''(y) = \mathcal{F}_{p,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)))$

$$
\Delta_{\omega}\check{\psi} = F_{p,\varepsilon}(\check{\psi}) \quad \text{and} \quad \Delta_{\omega}\check{\varphi}(\mathbf{x},y) = F_{p,\varepsilon}(\psi_{\mathfrak{m}}(y) + \check{\varphi}(\mathbf{x},y)) - F_{p,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))
$$

where $(\mathbf{x}, y) \in \mathbb{T}^{\kappa_0} \times \mathbf{I}_p$, $p = 0, 1, ..., \kappa_0;$

- **•** Boundary conditions: $\breve{\varphi}(\mathbf{x}, -1) = \breve{\varphi}(\mathbf{x}, 1) = 0;$
- Symmetries: we search for (space) reversible $\check{\varphi}(\mathbf{x}, y)$, namely

 $\phi(\mathbf{x}, \mathbf{y}) \in \text{even}(\mathbf{x})\text{even}(\mathbf{y})$;

Functional spaces: Sobolev spaces $H^{s,\rho} := H^s(\mathbb{T}^{\kappa_0}, H_0^{\rho}([-1,1]))$, with

$$
H^{s,\rho} := \Big\{ u(\mathbf{x},y) = \sum_{\ell \in \mathbb{Z}^{\kappa_0}} u_{\ell}(y) e^{i\ell \cdot \mathbf{x}} \, : \, \|u\|_{s,\rho}^2 := \sum_{\ell \in \mathbb{Z}^{\kappa_0}} \big\langle \ell \big\rangle^{2s} \|u_{\ell}\|_{H_0^{\rho}([-1,1])}^2 < \infty \Big\}.
$$

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

THE LINEAR PROBLEM AT THE EQUILIBRIUM

Linearizing the Euler equation at $\varphi = 0$, we get, for $(\mathbf{x}, y) \in \mathbb{T}^{\kappa_0} \times [-1, 1]$

$$
\{\psi_{\mathfrak{m}}, \Delta_{\omega}\breve{\varphi}\} + \{\breve{\varphi}, \psi''_{\mathfrak{m}}\} = 0 \ \ \leadsto \ \ (\omega \cdot \partial_{\mathbf{x}})^2 \breve{\varphi}(\mathbf{x}, y) = \mathcal{L}_{\mathfrak{m}} \breve{\varphi}(\mathbf{x}, y)
$$

(recall that $\mathcal{L}_{\mathfrak{m}} = -\partial_y^2 + Q_{\mathfrak{m}}$ and that $\psi_{\mathfrak{m}}''' = Q_{\mathfrak{m}} \psi_{\mathfrak{m}}'$);

• Family of space quasi-periodic solutions

$$
\varphi(x,y) = \sum_{j=1}^{\kappa_0} A_j \cos(\lambda_{j,m}(E)x) \phi_{j,m}(y), \quad A_j \in \mathbb{R} \setminus \{0\} \tag{4}
$$

 $\text{with frequency vector } \omega \equiv \vec{\omega}_{\mathfrak{m}}(\texttt{E}) := (\lambda_{1,\mathfrak{m}}(\texttt{E}),...,\lambda_{\kappa_0,\mathfrak{m}}(\texttt{E})) \in \mathbb{R}^{\kappa_0} \setminus \{0\}$ (recall that $-\lambda_{1,\mathfrak{m}}^2(\text{E}),...,-\lambda_{\kappa_0,\mathfrak{m}}^2(\text{E}) < 0$ are the negative eigenvalues of $\mathcal{L}_\mathfrak{m}$).

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

THE ROLE OF THE PARAMETER E ` ˘

Recall the constrain $Er = \kappa_0$ $\pi + \frac{1}{4}$ and $\vec{\omega}_{\mathfrak{m}}(\mathsf{E}) := (\lambda_{1,\mathfrak{m}}(\mathsf{E}), ..., \lambda_{\kappa_0,\mathfrak{m}}(\mathsf{E}));$

PROPOSITION $(\vec{\omega}_m(E)$ is DIOPHANTINE)

Let $E_2 > E_1 > (\kappa_0 + \frac{1}{4})\pi$. Given $\overline{v} \in (0,1)$ and $\overline{\tau} \gg 1$, there exists a Borel set

 $\mathcal{K} = \mathcal{K}(\overline{v}, \overline{\tau}) :=$ $\texttt{E}\in\left[\texttt{E}_{1}, \texttt{E}_{2}\right]\,:\,|\vec{\omega}_{\mathtt{m}}(\texttt{E})\cdot \ell|\geqslant \overline{v}\left\langle \ell\right\rangle ^{-\overline{\tau}},\,\,\forall\,\ell\in\mathbb{Z}^{\kappa_{0}}\backslash\{0\}$ *,*

such that $E_2 - E_2 - |\overline{K}| = o(\overline{v})$.

Goal: existence of a small amplitude, reversible **space quasi-periodic** function $\phi(\mathbf{x}, y)$, solution of the equation

$$
\Delta_{\omega}\breve{\varphi}(\mathbf{x},y) = F_{\rho,\varepsilon}(\psi_{\mathfrak{m}}(y) + \breve{\varphi}(\mathbf{x},y)) - F_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))
$$
(5)

with frequency vector $\omega \in \mathbb{R}^{\kappa_0}$ close to $\vec{\omega}_{\mathfrak{m}}(\mathtt{E})$, resembling at leading order a linear solution [\(4\)](#page-20-0) at the equilibrium, for a **fixed valued of the depth** $E \in \mathcal{K}$ and **for most values of an auxiliary parameter**

$$
A \in \mathcal{J}_{\varepsilon}(E) := [E - \sqrt{\varepsilon}, E + \sqrt{\varepsilon}]. \tag{6}
$$

GH. QQ

Theorem (F.-Masmoudi-Montalto (2023))

Fix $\kappa_0 \in \mathbb{N}$ and $\mathfrak{m} \gg 1$. Fix also $E \in \overline{\mathcal{K}}$ and $\xi = (\xi_1, \ldots, \xi_{\kappa_0}) \in \mathbb{R}_{>0}^{\kappa_0}$. Then there exist $\overline{s} > 0$, $\varepsilon_0 > 0$ such that the following hold.

1) For any $\varepsilon \in (0, \varepsilon_0)$ there exists a Borel set $\mathcal{G}_{\varepsilon} = \mathcal{G}_{\varepsilon}(\mathbf{E}) \subset \mathcal{J}_{\varepsilon}(\mathbf{E})$, with $\mathcal{J}_{\varepsilon}(\mathbf{E})$ as in [\(6\)](#page-21-0) and with density 1 at E when $\varepsilon \to 0$, namely $\lim_{\varepsilon \to 0} (2\sqrt{\varepsilon})^{-1} |\mathcal{G}_{\varepsilon}(E)| = 1$;

 $2)$ There exists $h_{\varepsilon} = h_{\varepsilon}(\mathbf{E}) \in H_0^3([-1,1]),\, \|h_{\varepsilon}\|_{H^3} \lesssim \varepsilon,\, h_{\varepsilon} = \mathrm{even}(y),$ such that, for any $\mathtt{A} \in \mathcal{G}_{\varepsilon}$, the equation [\(5\)](#page-21-1) has a reversible, **space quasi-periodic** solution of the form

$$
\tilde{\varphi}_{\varepsilon}(\mathbf{x},y)|_{\mathbf{x}=\tilde{\omega}(\mathbf{A})x}=h_{\varepsilon}(\mathbf{E};y)+\varepsilon\sum_{j=1}^{\kappa_{0}}\sqrt{\xi_{j}}\cos(\tilde{\omega}_{j}(\mathbf{A})x)\phi_{j,\mathfrak{m}}(\mathbf{E};y)+\breve{r}_{\varepsilon}(\mathbf{x},y)|_{\mathbf{x}=\tilde{\omega}(\mathbf{A})x},\qquad(7)
$$

 $where \ \ \check{r}_{\varepsilon} = \check{r}_{\varepsilon}(\mathbb{E}, \mathbb{A}; \mathbf{x}, y) \in H^{\bar{\mathbf{s}}, 3}, \text{ with } \lim_{\varepsilon \to 0} \frac{\|\check{r}_{\varepsilon}\|_{\bar{\mathbf{s}}, 3}}{\varepsilon} = 0, \text{ and } \ \widetilde{\omega} = (\widetilde{\omega}_j)_{j=1,\dots,\kappa_0} \in \mathbb{R}^{\kappa_0}, \text{ depending on } \mathbb{R}$ on A and ε , with $|\tilde{\omega}(A) - \tilde{\omega}_m(E)| \le C\sqrt{\varepsilon}$, with $\tilde{C} > 0$ independent of E and A. Moreover for any $\varepsilon \in [0, \varepsilon_0]$, the stream function

$$
\psi_{\varepsilon}(x,y) = \check{\psi}_{\varepsilon}(\mathbf{x},y)|_{\mathbf{x}=\widetilde{\omega}(\mathtt{A})x} = \psi_{\mathfrak{m}}(y) + \check{\varphi}_{\varepsilon}(\mathbf{x},y)|_{\mathbf{x}=\widetilde{\omega}(\mathtt{A})x},\tag{8}
$$

with φ _{ϵ}(**x**, y) as in [\(7\)](#page-22-0), defines a space quasi-periodic solution of the steady 2D Euler equation that is **close to the Couette flow** with estimates

$$
\|\check{\psi}_{\varepsilon}-\psi_{\operatorname{cou}}\|_{\overline{s},3}\lesssim_{\overline{s}} \tfrac{1}{\sqrt{E}}+\varepsilon\,,\quad \psi_{\operatorname{cou}}(y):=\tfrac{1}{2}y^2\,.
$$

 \equiv 990

COMMENTS ON THE MAIN RESULTS

- **The shear perturbation** $h_{\varepsilon}(\mathbf{v})$ **comes from the forced modification in [\(5\)](#page-21-1) of** the nonlinearities $F_{p,m}(\psi)$ into $F_{p,n}(\psi)$;
- The second term of $\varphi_{\varepsilon}(\mathbf{x}, y)$ in [\(8\)](#page-22-1) retains the space quasi-periodicity of the linearized solution and is constructed with a suitable Nash-Moser iterative scheme (the eigenfunctions $(\phi_{i,m}(E; y))_{i\in\mathbb{N}}$ depend on the parameter E!);
- Such solutions exist for fixed values of the depth $E \in \overline{\mathcal{K}}$ so that $\vec{\omega}_m(E)$ is Diophantine and for most values of the auxiliary parameter $A \in \mathcal{J}_{\varepsilon}(\mathbf{E})$ so that $\widetilde{\omega} = \widetilde{\omega}(\mathbf{A}, \varepsilon)$ is non-resonant as well;
- Traveling quasi-periodic flows: the stream function

$$
\psi_{\text{tr}}(t,x,y) := cy + \psi_{\varepsilon}(x - ct, y)
$$

= $cy + \psi_{\text{m}}(y) + \breve{\varphi}_{\varepsilon}(\phi, y)|_{\phi = x - \vartheta = \tilde{\omega}(x - ct)}, \quad \mathbf{x}, \vartheta \in \mathbb{T}^{\kappa_0},$

solve the Euler equations in vorticity formulation

$$
(\Omega_{\rm tr})_t + (\psi_{\rm tr})_y(\Omega_{\rm tr})_x - (\psi_{\rm tr})_x(\Omega_{\rm tr})_y = 0\,, \quad \Omega_{\rm tr}:= \Delta \psi_{\rm tr}\,.
$$

E

 QQ

• Generalized Kelvin's cat-eyes flow: The flow generated by the stream function $\breve\psi_\varepsilon(\mathbf{x},y)$ is a deformation of the near-Couette shear flow $(\psi_{\mathfrak{m}}'(y),0)$:

$$
\begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} = \begin{pmatrix} \psi_{\mathfrak{m}}'(y) + h_{\varepsilon}'(y) \\ 0 \end{pmatrix} + \varepsilon \sum_{j=1}^{\kappa_0} \sqrt{\xi_j} \begin{pmatrix} \cos(\widetilde{\omega}_j x) \phi'_{j,\mathfrak{m}}(y) \\ \widetilde{\omega}_j \sin(\widetilde{\omega}_j x) \phi_{j,\mathfrak{m}}(y) \end{pmatrix} + o(\varepsilon).
$$

Figure: Streamlines of (the leading order of) a bi-periodic flow

 Ω

K ロ ト K 何 ト K 目

SUMMARY OF MAIN DIFFICULTIES AND NOVELTIES

- The nonlinearity of the semilinear "elliptic" problem that we solve is actually an "unknown" of the problem and it has to be constructed in such a way that one has a near Couette, space quasi-periodic solution to the Euler equation;
- **•** Each space quasi-periodic function $\varphi_{\varepsilon}(\mathbf{x}, y)$ solve a nonlinear PDE with nonlinearities explicitly depending of the size *ε* of the solution;
- The nonlinearities have finite smoothness and their derivatives lose in size;
- The unperturbed frequencies of oscillations are only implicitly defined and their non-degeneracy property relies on an asymptotic expansion for large values of the parameter. It implies that the required non-resonance conditions are not trivial to verify;
- The basis of eigenfunctions $(\phi_{j,\mathfrak{m}}(y))_{j\in\mathbb{N}}$ of the operator $\mathcal{L}_\mathfrak{m} = -\partial^2_\mathsf{y} + \mathsf{Q}_\mathfrak{m}(y)$ is not the standard exponential basis and depends explicitly on the depth parameter E;
- The potential $Q_m(y)$ is the ruler ot the scheme!

 QQ

STRATEGY OF THE PROOF

1 The shear equilibrium $\psi_m(y)$ close to Couette and its nonlinear ODE

$$
\psi_{\mathfrak{m}}'''(y) = Q_{\mathfrak{m}}(y)\psi_{\mathfrak{m}}'(y) \ \ \leadsto \ \ \psi_{\mathfrak{m}}''(y) = F_{p,\mathfrak{m}}(\psi_{\mathfrak{m}}(y)), \ y \in \mathbb{I}_p;
$$

² A forced elliptic PDE for the perturbation of the shear equilibrium

$$
\Delta_{\omega}\breve{\varphi}(\mathbf{x},y)=F_{\mathbf{p},\varepsilon}(\psi_{\mathfrak{m}}(y)+\breve{\varphi}(\mathbf{x},y))-F_{\mathbf{p},\mathfrak{m}}(\psi_{\mathfrak{m}}(y));
$$

³ A Nash-Moser scheme of hypothetical conjugation with the auxiliary parameter

$$
\mathcal{F}(i,\alpha) = \mathcal{F}(\omega,\mathbf{A},\mathbf{E},\varepsilon;i,\alpha) := \omega \cdot \partial_{\mathbf{x}}i(\mathbf{x}) - X_{\mathcal{H}_{\varepsilon,\alpha}}(i(\mathbf{x})) = 0,
$$
\n
$$
i = i(\mathbf{x}) = (\theta(\mathbf{x}), I(\mathbf{x}), z(\mathbf{x})),
$$
\n
$$
\mathcal{H}_{\varepsilon,\alpha} := \alpha \cdot I + \frac{1}{2} \left(z, \left(-\frac{\mathcal{L}_m}{0} \right) \right)_{L^2}
$$
\n
$$
+ \sqrt{\varepsilon} \left(P_{\varepsilon}(A(\theta, I, z) + \frac{1}{\sqrt{\varepsilon}} \left(\vec{\omega}_m(\mathbf{E}) - \vec{\omega}_m(\mathbf{A}) \right) \cdot I \right).
$$

 $2Q$

メロトメ 伊 トメ ミトメ ミト

THE POTENTIAL $Q_m(y)$ and its properties

• For $m \gg 1$ large enough, we define the even function

$$
\mathit{Q}_\mathfrak{m}(\mathit{y}) = \mathit{Q}_\mathfrak{m}(E,r;\mathit{y}) \simeq -E^2 \Big(\Big(\frac{\cosh(\frac{\mathit{y}}{r})}{\cosh(1)} \Big)^{\mathfrak{m}} + 1 \Big)^{-1} \,,
$$

such that, in the limit $m \to \infty$, it uniformly approaches the classical potential well (on compact intervals excluding $\{|y| = r\}$) #

$$
Q_{\mathfrak{m}}(y) = Q_{\mathfrak{m}}(E, r; y) \stackrel{\mathfrak{m} \to \infty}{\longrightarrow} Q_{\infty}(E, r; y) := \begin{cases} 0 & |y| > r, \\ -E^2 & |y| < r; \end{cases}
$$

LEMMA (ESTIMATES FOR $Q_m(y)$)

We have

$$
\sup_{m\gg 1}\|Q_m\|_{L^\infty([-1,1])}\lesssim \|Q_\infty\|_{L^\infty([-1,1])}\lesssim E^2\,.
$$

Moreover, for any fixed $\gamma > 0$ sufficiently small, we have, for any $n \in \mathbb{N}_0$,

$$
|\partial_y^n (Q_m(y) - Q_\infty(y))| \to 0 \quad \text{uniformly in }\; y \in [-1,1]\backslash (B_\gamma(\mathbf{r}) \cup B_\gamma(-\mathbf{r}))
$$

$$
\text{and } \|Q_m-Q_\infty\|_{L^p([-1,1])}\to 0 \text{ for any } p\in [1,\infty).
$$

How to construct the nonlinearity $F_{0,m}(\psi)$

- We determine the even shear $\psi_{\mathfrak{m}}(y)$ by solving $\psi_{\mathfrak{m}}'''(y) = Q_{\mathfrak{m}}(y)\psi_{\mathfrak{m}}'(y)$;
- Since $Q_{\mathfrak{m}}(y)$ and $\psi_{\mathfrak{m}}(y)$ are even, then (recall that $\psi'_{\mathfrak{m}}(y_{1,\mathfrak{m}}) = 0$)

$$
Q_m(y) = K_{0,m}(y^2), \quad \psi_m(y) = G_{0,m}(y^2), \quad 0 \leq |y| < y_{1,m},
$$

where $K_{0,m}$, $G_{0,m} \in \mathcal{C}^{\infty}$; $\psi_\mathfrak{m}(\mathsf{y})$ is invertible as a function of y^2 until reaches $|\mathsf{y}| = \mathsf{y}_{1,\mathfrak{m}}$:

$$
\left|\begin{array}{ll}\psi_{\mathfrak{m}}'(y)\neq 0, & 0<|y|< y_{1,\mathfrak{m}}\\ \psi_{\mathfrak{m}}''(0)\neq 0, & \end{array}\right.
$$

• We define $F_{0,m}(\psi)$ as solution of the Cauchy problem

$$
\begin{cases} F'_{0,m}(\psi) = K_{0,m}\big(G_{0,m}^{-1}(\psi)\big), & \psi \in \psi_m([0, y_{1,m} - \gamma_0]) \,, \\ F_{0,m}(\psi_m(0)) = \psi_m^{\prime\prime}(0) \,. \end{cases}
$$

#

How to construct the nonlinearity $F_{1,m}(\psi)$

 $Q_m(y)$ and $\psi_m(y)$ are not even-symmetric with respect to $y = y_{1,m}$, BUT they are close to be: we can write, for $||y| - y_{1,m}| < r_{1,+}$, with $r_{1,-}$:= $y_{1,m}$ – $y_{0,m}$ and $r_{1,+}$:= $y_{2,m}$ – $y_{1,m}$. $Q_{\mathfrak{m}}(y) = K_{1,\mathfrak{m},\pm}$ $(|y| - y_{1,m})^2$ $((|y| - y_{1,m})^2), \quad K_{1,m,\pm} \in C^S(B_{\sqrt{r_{1,\pm}}}(0)),$

$$
\psi_{\mathfrak{m}}(\mathsf{y}) = \mathsf{G}_{1,\mathfrak{m},\pm}\big((|\mathsf{y}| - \mathsf{y}_{1,\mathfrak{m}})^2\big)\,,\quad \mathsf{G}_{1,\mathfrak{m},\pm} \in \mathcal{C}^{S+1}(\mathcal{B}_{\sqrt{r_{1,\pm}}}(0))\,;
$$

In their regions (where $\psi_{\mathfrak{m}}'(y)$ does not change sign), both $G_{1,\mathfrak{m},-}(z)$ and $G_{1,m,+}(z)$ are invertible (also here, $\psi''_m(y_{1,m}) \neq 0$).

• In the region $0 < |y| \leq y_{1,m}$, we consider

#

$$
\begin{cases} F'_{0,m}(\psi) = K_{1,m,-}(G_{1,m,-}^{-1}(\psi)), & \psi \in \psi_m([\gamma_{1,-},y_{1,m}]), \\ F_{0,m}(\psi_m(y_{1,m})) = \psi_m''(y_{1,m}), \end{cases}
$$

which has to coincide with the $F_{0,m}(\psi)$ constructed before, because

$$
\mathit{F}'_{0,m}(\psi_{\mathfrak{m}}(y)) = \mathit{Q}_{\mathfrak{m}}(y) \quad \forall \, |y| \in [0,y_{1,\mathfrak{m}}]
$$

• In the region $y_{1,m} \leqslant |y| < y_{2,m}$, we define $F_{1,m}$ as the solution of

$$
\begin{cases}\nF'_{1,m}(\psi) = K_{1,m,+}\big(G_{1,m,+}^{-1}(\psi)\big), & \psi \in \psi_m([y_{1,m}, y_{2,m} - \gamma_{1,+}])\,, \\
F_{1,m}(\psi_m(y_{1,m})) = \psi_m''(y_{1,m})\,,\n\end{cases}
$$

Thanks to the "approximate local evenness" we have \mathcal{C}^{S+1} -continuity when $\psi = \psi_{m}(y)$ at $y = \pm y_{1,m}$: for any $n = 0, 1, ..., S + 1$,

$$
\lim_{|y| \to \mathbf{y}_{1,\mathfrak{m}}^-} \partial_y^n(F_{0,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))) = \lim_{|y| \to \mathbf{y}_{1,\mathfrak{m}}^+} \partial_y^n(F_{1,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))) = \psi_{\mathfrak{m}}^{(n+2)}(y_{1,\mathfrak{m}}).
$$

(重) QQ

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

THE ISSUE NONLINEARITY VS. PERTURBATION

• Recall: If we search for $\psi(x, t)$ such that, for any $p = 0, 1, ..., \kappa_0$

$$
\psi_{\mathfrak{m}}''(y)=\mathit{F}_{\rho,\mathfrak{m}}(\psi_{\mathfrak{m}}(y))\;\;\mathop{\sim}\!\mathop{\sim}\!\mathop{\rightarrow}\;\Delta\psi(x,y)=\mathit{F}_{\rho,\mathfrak{m}}(\psi(x,y))\,,\;\;(x,y)\in\mathbb{R}\times\mathbf{I}_{\rho}
$$

then we immediately lose continuity at $\{|y| = y_{p,m}\}$: in general

$$
\lim_{|y| \to y_{\rho,m}^-} F_{\rho-1,m}(\psi_m(y) + \varphi(x,y)) \neq \lim_{|y| \to y_{\rho,m}^+} F_{\rho,m}(\psi_m(y) + \varphi(x,y))
$$

unless $\varphi(x, \pm y_{p,m}) = 0$ for any $x \in \mathbb{R}$ (too strict!)

Key idea: replace $F_{p,m}$ with a perturbed version to "accomodate" the perturbation $\varphi(x, y) = O(\varepsilon)$:

$$
F_{p,\eta}(\psi) = \left\{ \begin{array}{ll} \frac{1}{2} \big(F_{p-1,\mathfrak{m}}(\psi) + F_{p,\mathfrak{m}}(\psi) \big) = F_{p-1,\eta}(\psi) & |\psi - \psi_{\mathfrak{m}}(y_{p,\mathfrak{m}})| \leqslant \eta \,, \\ F_{p,\mathfrak{m}}(\psi) & |\psi - \psi_{\mathfrak{m}}(y_{p,\mathfrak{m}})| \geqslant 2\eta \ \, \text{and} \\ \frac{1}{2} \big(F_{p+1,\mathfrak{m}}(\psi) + F_{p,\mathfrak{m}}(\psi) \big) = F_{p+1,\eta}(\psi) & |\psi - \psi_{\mathfrak{m}}(y_{p+1,\mathfrak{m}})| \leqslant \eta \,, \end{array} \right.
$$

where $\eta = \varepsilon^{1/S} \gg \varepsilon \in (0,1)$, with smooth connections in the remaining regions, so that $F_{p,n}(\psi) \to F_{p,m}(\psi)$ uniformly as $\eta \to 0$.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Figure: Where the nonlinearities Fp*,η* are constructed

 290

K ロ ト K 伊 ト K ミ

SPECTRAL ANALYSIS OF $\mathcal{L}_{\mathfrak{m}} = -\partial_y^2 + \mathcal{Q}_{\mathfrak{m}}(y)$

PROPOSITION

The Schrödinger operator $\mathcal{L}_{\mathfrak{m}} = -\partial_y^2 + Q_{\mathfrak{m}}(y)$ is self-adjoint in $L_0^2([-1,1])$ on $D(\mathcal{L}_\mathfrak{m}) := H^1_{0,\text{even}}[-1,1]$ with a countable L^2 -basis $(\phi_{j,\mathfrak{m}}(y))_{j\in\mathbb{N}}\subset \mathcal{C}^\infty[-1,1]$ corresponding to the eigenvalues $(\mu_{i,m})_{i\in\mathbb{N}}$. Moreover, there exists $\overline{\mathfrak{m}} = \overline{\mathfrak{m}}(E_1, E_2, \kappa_0) \gg 1$ large enough such that, for any $m \geqslant \overline{m}$, #

$$
\mu_{j,m} = \begin{cases}\n-\lambda_{j,m}^2 \in (-\mathbb{E}^2, 0) & j = 1, ..., \kappa_0, \\
\lambda_{j,m}^2 > 0 & j \geq \kappa_0 + 1.\n\end{cases}
$$

In particular, for any $j = 1, ..., \kappa_0$, we have that $\lambda_{i,m}$ is close to $\lambda_{i,\infty}$, with the latter being the *j*-th root out of κ_0 in the region $\lambda \in (0, E)$ of the equation

$$
\mathfrak{F}(\lambda):=\lambda\cos\left(r\sqrt{E^2-\lambda^2}\right)\coth((1-r)\lambda)-\sqrt{E^2-\lambda^2}\sin\left(r\sqrt{E^2-\lambda^2}\right)=0\,.
$$

LEMMA

For any $j = 1, ..., \kappa_0$, we have the asymptotic expansion

$$
\lambda_{j,\infty}(\mathbf{E}) = \mathbf{E} \cos \left(\pi (\alpha_0(j) + \alpha_2(j)\beta_j(\mathbf{E})^2 + o(\beta_j(\mathbf{E})^3)) \right), \ \mathbf{E} \to +\infty,
$$

$$
\beta_j(\mathbf{E}) := \exp \left(((\kappa_0 + \frac{1}{4})\pi - \mathbf{E}) \cos(\pi \alpha_0(j)) \right), \quad \sin(\pi \alpha_0(j)) = \frac{j - \frac{1}{2} - \alpha_0(j)}{\kappa_0 + \frac{1}{4}}.
$$

E K K

K ロ > K 母 > K

Thank you for your attention!

Luca Franzoi (NYU Abu Dhabi) [Space Quasi-periodic near Couette](#page-0-0) School/Workshop on Wave Dynamics: Turbulent vs Integrable Effects ICTP, Trieste - August 30th, 2023 35 / 35

 $2Q$

メロトメ 伊 トメ ミトメ ミト