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"Cloud organization" is a mesoscale characteristic:
state of the constellation of clouds in a cloud field
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Mesoscale cloudiness dominates cloud-climate uncertainty:
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Figure adapted from latest IPCC  report (AR6, WG 1, Fig. 7.8); 
*anthropogenic contribution to observed temperature record

greenhouse gas warming 
uncertainty: cloud feedback 
                    (trade Cu, tropical anvils)

aerosol cooling 
uncertainty: aerosol-cloud forcing 
                    (cloud-fraction adjustments)

observed warming*



"Cloud organization" is a multiscale phenomenon:

hours days

cloud

cloud field

Lagrangian evolution

self-

minutes

cloud 

(micro/physical) 

processes

large-scale 

"cloud-contro
llin

g" 

factors

organization



Peru



PeruMesoscale self-organization:

emerges from small-scale processes 
is not enforced, but modulated, by larger scales



closed cells: 
high aerosol ~> no rain

open cells: 
low aerosol~> rain

Self-organization of stratocumulus cells:
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Cellular network description of self-organization:
[Glassmeier & Feingold, PNAS, 2017]



initial 
cellular
network

steady-state 
network 

shaped by 
rules

LES network model
variance of neighbor distribution 1,8 1,3
“large surrounded by small” yes yes

A B C D

E F G H

Fig. 4. (A–D) Neighbor number distributions, which are equivalent to the size and degree distribution (see Cloud Network Characteristics), with variance
�2 and (E–H) topological scar (see Cloud Network Characteristics) for the LES-derived (A and E) closed- and (B and F) open-cellular networks and for the
networks resulting from the (C and G) closed-cell and (D and H) open-cell heuristic network model.

we visualize topological scars as a pattern of pairs (�n1,�n2)
in a diagram accounting for the changes in the number of
neighbors �n1 <�n2 of two neighboring cells. As illustrated
in Fig. 2A, flips are characterized by (�n1,�n2)2 {(�1, 0),
(�1,+1), (0,+1), (+1,+1)}. The appearance of a cell cor-
responds to (�n1,�n2)2 {(0,+1), (+1,+1), (+1,+3)}, and
the disappearance corresponds to (�n1,�n2)2 {(�3,�1),
(�1,�1), (�1, 0)}. Fig. 4 E and F shows the topological scars
resulting from the temporal evolution of the LES-derived cloud
networks. In accordance with the very similar network char-
acteristics in Table 1, closed- and open-cell networks feature
very similar topological scars. This indicates that the open-
and closed-cell networks are governed by comparable network
dynamics. Both scars bear the imprint of flips (center of the
plots) along with the appearance and disappearance of six-
sided cells [peaks at (�n1,�n2)= (0,±6)] and the simultane-
ous appearance or disappearance of two neighboring six-sided
cells [(�n1,�n2)= (±6,±6)]. The appearance of six-sided cells
combines the appearance of a three-sided cell with three con-
secutive edge flips that increase the new cell’s neighbor num-
ber. This means that we do not fully resolve elemental trans-
formations in our analysis. The simultaneous appearance of
two cells indicates a spatial asymmetry of the spawning pro-
cess such that new cells emerge at neighboring vertices rather
than in a triangular arrangement that would promote a perfectly
hexagonal grid.

Heuristic Model for Cloud Organization. Combining elemental
transformations, we propose network dynamics Tclosed for closed-
cellular (Fig. 2 C and D) and Topen for open-cellular (Fig. 2E)
networks that encapsulate our physical understanding of the cor-
responding cloud processes (also see Supporting Information):
For the oscillatory dynamics of the open-cell case, a parent cell
with np =6 neighbors can potentially spawn new cells at all of
its vertices. The development of a new cell, however, requires
space for expansion. This is given in the neighborhood of older
and larger cells with nc/d � 6, which are weakened as a result
of dissipating rain. We assume that new cells quickly expand at
the expense of these cells until both cells have similar sizes with
na/b/c/d � 5. To conserve the overall number of cells, the time step
is finalized by the disappearance of cells c and d .

The quasi-stationary closed-cell dynamics is less structured,
and its evolution consists of spatially separated pairs of cell divi-
sion (Fig. 2C) of cells with np � 6 neighbors and cell merging

(Fig. 2D). Cell division and merging can be decomposed into the
appearance, or disappearance, of a new cell and edge flips (Fig.
S3 A–I). When not resolving the intermediate steps including tri-
angular cells, the open-cell dynamics can thus be considered a
double cell division followed by a double cell merging at the same
location (see Supporting Information). In this sense, the dynamics
governing open and closed cells are equivalent, which explains
the very similar neighbor number distributions and topological
scars. Our analysis does not fully resolve the intermediate steps
because it is difficult to separate fluctuations that are not part of
the organized convective motion from newly emerging cells. The
intermediate occurrence of these cells is, however, reflected in
the slightly larger variance �2 of the open-cell neighbor number
distribution (Table 1).

As illustrated in Fig. 4 E and F, edge flips occur much more
frequently than cell appearance and disappearance events. The
way of choosing edges for flips can thus strongly influence the
network properties: Table 1 and Fig. S4A illustrate the network
properties resulting from iteratively applying flips Frand to ran-
domly chosen edges of an initial network (see Supporting Infor-
mation). The result is a very broad size distribution where few-
sided cells are more populated than many-sided cells, because
the latter are more likely to be randomly selected for edge flip-
ping. This scenario of edge flipping is not congruent with cloud
field dynamics, where edge flips are driven by the expansion
of small cells (30). We account for this bias by selecting those
edges of a given cell for which nb + nd in Fig. 2A is smallest.
The network resulting from edge flips Fbias biased in this man-
ner is peaked at six (Fig. S4B). The specific bias of flips can be
considered as an adjustable “parameter” of the network model
that is needed to capture the details of the physical system that
are lost when interpreting it as a network. This has been illus-
trated for foam ripening, where experimental results of a ⇡ 1.2
(31) are reproduced when explicitly taking surface tension into
account for determining edge flips (32), but not for random flips
(24). The identical bias for open and closed cells contributes
to their equivalent network evolution. Examples of natural con-
vection with differing network structure likely feature other
biases.

Based on the rules Tclosed and Topen, we can model the evolu-
tion of a cloud network by iteratively applying them at random
locations, starting from a suitable initial network (see Support-
ing Information). To mimic the competition of cells for space
independent of cell division or merging events, we add two
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Predictive network model vs LES cell arrangement:
[Glassmeier & Feingold, PNAS, 2017]



Self-organization of stratocumulus thickness:
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high aerosol ~> no rain

open cells: 
low aerosol~> rain
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Predator-prey model for stratocumulus:
[Koren & Feingold, PNAS, 2011; Koren et al., Chaos, 2017]

under weak precipitation (larger Nd) and tend to oscillate more
vigorously in the presence of stronger precipitation (smaller Nd).
In that sense Nd can be viewed as a damping parameter of the
cloud-rain coupled oscillator. When Nd is large, the damping is
strong, and the system reaches steady state faster. When precipi-
tation is sufficiently strong, the system may take some time to
reach steady state (Fig. 7) and may even oscillate around a mean
state as in solution to the LV equations in Fig. 2. The probability
of oscillation around a steady state increases as the delay time
T 0 increases, allowing the cloud to attain more significant depth
before rain starts to develop.

Discussion and Conclusions
There exist many examples of dynamical systems that, owing
to their complexity, are not always tractable via the purely
reductionist approach. These systems do, however, benefit from
a complementary “systems-based” approach (25) which seeks to
capture emergent behavior, as opposed to representing the de-
tailed process interactions. The simple set of predator-prey-like
equations proposed here has been shown to mimic some aspects
of the emergent behavior of the aerosol–cloud–precipitation
system revealed by detailed numerical simulation. The emer-
gence takes the form of coupled oscillating cycles of cloud and
rain, mediated by the aerosol. Thus the multitude of physical pro-
cesses that interact in the cloud system reveal a pattern of rain
preying on cloud much like one species in the animate world
might feed off another.

Coupled oscillators are commonly observed in chemical,
biological, and physical systems (26–28) and also manifest them-
selves in convective systems (12, 29). The existence of this
behavior suggests that complex systems may be amenable to
representation by a manageable number of parameters. In the
current case, the model captures qualitatively some modes of
behavior of cloudy boundary layers using only five free para-
meters: dynamical and aerosol replenishment parameters H0 and
N0 [analogous to the “carrying capacity” parameters in modified
LVequations; (16)] and their respective time constants τ1 and τ2;
and delay time T 0. The first four parameters describe the external
forcings to the system while T 0 is determined by the internal

microphysical processes, i.e., the rate at which cloud water is
converted to rain water.

Solutions to the simple set of equations corroborate some
earlier results and provide interesting insights. A steady-state
analytical solution to the equation for H (Eq. 12) points to the
previously described bifurcation of the system into two stable
states (22): one characterized by large Nd where H is determined
primarily by dynamical forcing, and a second at lowNd whereH is
determined by Nd. A similar pattern emerges from solutions to
the coupled equations, recorded when the system reaches steady
state, over a range of (H0; N0) (Fig. 5A). The fact that this bifur-
cation, both observed in nature (open- vs. closed-cells in Fig. 1),
and simulated by detailed LES, is captured by relatively simple
models such as that used by ref. 22, or the even simpler preda-
tor-prey model, is suggestive of emergence.

The time-dependent simulations of the equations (Figs. 6
and 7) clearly reveal the predator-prey analogy to the aerosol–
cloud–precipitation system. For a drizzling boundary layer the
model captures the coupled cloud-rain oscillations generated
by a much more complex LES (compare Fig. 3 with Fig. 6 or 7).
Under conditions of weak rain, the system exhibits damped
oscillations to steady state (Fig. 6). The oscillations increase
with increasing R, and take longer to damp to steady state. Under
relatively strong drizzle and larger delay times, the damping
component may disappear and the system reaches a state of
steady oscillations in which the system traces out a region of
(H; R) or (H; Nd) phase space (Fig. 7).

As in many other dynamic systems the model presented here
has a discrete number of preferred modes, as opposed to a
smooth transition between states. For example, Figs. 5–7 show
that only a limited part of the phase space is occupied. Stable
regions of parameter space, e.g., where precipitation is weak,
tend to be robust. Simulations that randomly perturb H0 and
N0 by !50% behave much like the unperturbed simulations in
Figs. 6 and 7 (see SI Text, Fig. S1). In fact, the oscillating system
(Fig. 7) experiences a stabilization in response to the perturba-
tions (Fig. S2), provided the perturbations are not too strong,
and do not persist for too long. This response is in accord with

Fig. 6. Damped oscillation to steady state. (A) time series (first 600 min);
solid line: H; dashed line: R; red line: Nd ; (B) phase diagrams (for ∼7 d); solid
line: (H;R); red line: (H; Nd ). Input conditions: H0 ¼ 530 m; N0 ¼ 180 cm−3,
τ1 ¼ τ2 ¼ 60 min; T 0 ¼ 12 min.

Fig. 7. Oscillating, limit-cycle response of the H, R, Nd system. (A) time series
(first 600 min); solid line: H; dashed line: R; red line: Nd ; (B) phase diagrams
(for ∼7 d); solid line: (H;R); red line: (H; Nd ). Input conditions: H0 ¼ 670 m;
N0 ¼ 515 cm−3, τ1 ¼ 80 min; τ2 ¼ 84 min; T 0 ¼ 21.5 min.
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under weak precipitation (larger Nd) and tend to oscillate more
vigorously in the presence of stronger precipitation (smaller Nd).
In that sense Nd can be viewed as a damping parameter of the
cloud-rain coupled oscillator. When Nd is large, the damping is
strong, and the system reaches steady state faster. When precipi-
tation is sufficiently strong, the system may take some time to
reach steady state (Fig. 7) and may even oscillate around a mean
state as in solution to the LV equations in Fig. 2. The probability
of oscillation around a steady state increases as the delay time
T 0 increases, allowing the cloud to attain more significant depth
before rain starts to develop.

Discussion and Conclusions
There exist many examples of dynamical systems that, owing
to their complexity, are not always tractable via the purely
reductionist approach. These systems do, however, benefit from
a complementary “systems-based” approach (25) which seeks to
capture emergent behavior, as opposed to representing the de-
tailed process interactions. The simple set of predator-prey-like
equations proposed here has been shown to mimic some aspects
of the emergent behavior of the aerosol–cloud–precipitation
system revealed by detailed numerical simulation. The emer-
gence takes the form of coupled oscillating cycles of cloud and
rain, mediated by the aerosol. Thus the multitude of physical pro-
cesses that interact in the cloud system reveal a pattern of rain
preying on cloud much like one species in the animate world
might feed off another.

Coupled oscillators are commonly observed in chemical,
biological, and physical systems (26–28) and also manifest them-
selves in convective systems (12, 29). The existence of this
behavior suggests that complex systems may be amenable to
representation by a manageable number of parameters. In the
current case, the model captures qualitatively some modes of
behavior of cloudy boundary layers using only five free para-
meters: dynamical and aerosol replenishment parameters H0 and
N0 [analogous to the “carrying capacity” parameters in modified
LVequations; (16)] and their respective time constants τ1 and τ2;
and delay time T 0. The first four parameters describe the external
forcings to the system while T 0 is determined by the internal

microphysical processes, i.e., the rate at which cloud water is
converted to rain water.

Solutions to the simple set of equations corroborate some
earlier results and provide interesting insights. A steady-state
analytical solution to the equation for H (Eq. 12) points to the
previously described bifurcation of the system into two stable
states (22): one characterized by large Nd where H is determined
primarily by dynamical forcing, and a second at lowNd whereH is
determined by Nd. A similar pattern emerges from solutions to
the coupled equations, recorded when the system reaches steady
state, over a range of (H0; N0) (Fig. 5A). The fact that this bifur-
cation, both observed in nature (open- vs. closed-cells in Fig. 1),
and simulated by detailed LES, is captured by relatively simple
models such as that used by ref. 22, or the even simpler preda-
tor-prey model, is suggestive of emergence.

The time-dependent simulations of the equations (Figs. 6
and 7) clearly reveal the predator-prey analogy to the aerosol–
cloud–precipitation system. For a drizzling boundary layer the
model captures the coupled cloud-rain oscillations generated
by a much more complex LES (compare Fig. 3 with Fig. 6 or 7).
Under conditions of weak rain, the system exhibits damped
oscillations to steady state (Fig. 6). The oscillations increase
with increasing R, and take longer to damp to steady state. Under
relatively strong drizzle and larger delay times, the damping
component may disappear and the system reaches a state of
steady oscillations in which the system traces out a region of
(H; R) or (H; Nd) phase space (Fig. 7).

As in many other dynamic systems the model presented here
has a discrete number of preferred modes, as opposed to a
smooth transition between states. For example, Figs. 5–7 show
that only a limited part of the phase space is occupied. Stable
regions of parameter space, e.g., where precipitation is weak,
tend to be robust. Simulations that randomly perturb H0 and
N0 by !50% behave much like the unperturbed simulations in
Figs. 6 and 7 (see SI Text, Fig. S1). In fact, the oscillating system
(Fig. 7) experiences a stabilization in response to the perturba-
tions (Fig. S2), provided the perturbations are not too strong,
and do not persist for too long. This response is in accord with

Fig. 6. Damped oscillation to steady state. (A) time series (first 600 min);
solid line: H; dashed line: R; red line: Nd ; (B) phase diagrams (for ∼7 d); solid
line: (H;R); red line: (H; Nd ). Input conditions: H0 ¼ 530 m; N0 ¼ 180 cm−3,
τ1 ¼ τ2 ¼ 60 min; T 0 ¼ 12 min.

Fig. 7. Oscillating, limit-cycle response of the H, R, Nd system. (A) time series
(first 600 min); solid line: H; dashed line: R; red line: Nd ; (B) phase diagrams
(for ∼7 d); solid line: (H;R); red line: (H; Nd ). Input conditions: H0 ¼ 670 m;
N0 ¼ 515 cm−3, τ1 ¼ 80 min; τ2 ¼ 84 min; T 0 ¼ 21.5 min.
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Fig. 4. 2D cloud depth field at t = 4 h at full resolution (256 ⇥ 256, left) and spatially averaged cloud depth (32 ⇥ 32, right). Time series of cloud depth for the
locations encircled in red and orange are shown in Fig. 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. (a) Cloud depth time series after temporal smoothing (red) for the location encircled in red in the right panel of Fig. 4. Shown in purple and pink are the
two cycles extracted from this time series (without temporal smoothing). (b) Cloud depth time series after temporal smoothing (orange) for the location encircled
in orange in the right panel of Fig. 4. Shown in brown and yellow are the two cycles extracted from this time series (without temporal smoothing). (c) 297 cycles,
extracted from the LES (without temporal smoothing), are shown in light blue. The cloud cycles from panels (a) and (b) are shown in a thicker purple, pink, brown
and yellow lines. The dark blue line is the average of the 297 cycles. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

which also correspond to the samples with the highest posterior
probabilities, are the initial ensemble used in emcee.

Our code can be found at https://github.com/SpenceLunderm
an/LMGF20and can generate 105 samples in about 10 h and 106

samples in about 4 days (on a single core). For the results shown
below, we discard the first Ndiscard samples as ‘‘burn-in’’, where
Ndiscard = 5 · max IACT, and max IACT is the largest IACT of the
four parameters. Based on 2 · 106 samples, we compute IACTs of
a few hundred (see below), which indicates that the number of
samples we generate is sufficiently large (accuracy comparable to
thousands of independent samples).

4. Results and discussion

We perform the feature-based inversion, as described above,
using a constant droplet concentration of N = 25 cm�3, which is
the time-average of N during the 7.5 h of simulation considered.
In this context, it is important to realize that the effect of a
varying N over the range encountered in the LES has a minor
effect. The reason is that Eq. (1) implies that changes in N result in
a scaling of ↵ with the square root of N , but all other parameters
are independent of the value of N . In particular, if ↵0 is estimated
by assuming N = N0, then setting N ! N1 results in ↵1 =
↵
p
N1/N0.
The results of the feature-based inversion, based on an MCMC

chain with 2 · 106 samples, are illustrated in Fig. 6. The left panel
shows a triangle plot of the posterior samples, obtained via the
MCMC, and the right panel shows 104 limit cycles of KTF17,
corresponding to 104 parameter vectors drawn at random from
the posterior. Also shown are the LES feature and the variations
in the cloud cycles extracted from the LES. This figure should be
compared to Fig. 3, which shows the same information before the

Bayesian inversion, i.e., based on the prior distribution. We note
that the posterior distribution is more sharply peaked than the
prior (note the different axes in the triangle plots of Figs. 3 and
6), which indicates that the LES derived feature indeed constrains
all four parameters of KTF17.

The sharpening of the prior to a feature-based posterior dis-
tribution can also be seen by computing the sample mean and
sample standard deviations, listed in Table 2. We note a shift in
the sample mean and a reduction in sample standard deviations
from the prior to posterior distribution. Table 2 further lists the
maximum a posteriori (MAP) estimates, i.e., the sample with the
largest posterior probability. 1 We note that the MAP and mean
are not equal, which indicates that the posterior distribution is
not nearly Gaussian. In this context, it is also important to realize
that the posterior mean is not a posterior sample, i.e., its posterior
probability can be zero (because it may not satisfy all four prior
constraints). For this reason, the MAP may be a more useful
estimate of the KTF17 parameters than the posterior mean.

The left panel of Fig. 6 illustrates that cycles of KTF17, obtained
by numerical solution of KTF17 with parameters sampled from
the posterior, are well within the variations of the cloud cycles
extracted from the LES. This indicates that our error model and
the error covariance matrix R are reasonable. Here, we tuned, to
some extent, the additive inflation defined by � in (10). Recall
that error models are notoriously difficult to come by because
error models represent ‘‘what we do not know’’ about the system.

1 It is important to remember that marginal distributions, shown in the form
of histograms in the triangle plots, are not ‘‘projections’’ of the multivariate
probability distribution. For this reason, the maxima of the posterior marginals
(histograms) do not correspond to the mode of the multivariate posterior
distribution (MAP).
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Fig. 6. Left: Triangle plot of the posterior distribution (2 · 106 samples). Right: Shown in green are the limit cycles of KTF17 corresponding to 104 parameter vectors
drawn at random from the posterior. The LES feature (average of 297 LES cloud cycles) is shown as a dark blue line. The light blue shaded region represents two
sample standard deviations of the cloud cycles at each time instant (representing variations in the cloud cycles extracted from the LES). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Mean and standard deviations of the prior and posterior distributions. The MAP of the posterior is also listed.
Posterior quantities are computed from a MCMC chain with 2 · 106 samples; prior quantities are computed from
105 samples of the prior.

H0 (m) ⌧ (min) T (min) ↵ (days�1 m�2.5)
Prior Posterior Prior Posterior Prior Posterior Prior Posterior

Mean 1650 2063 137 120 43 33 836 548
Std. 1067 722 61 48 27 7 495 176
MAP – 2062 – 131 – 36 – 450

Table 3
Mean and standard deviations of cloud cycle properties of the LES and KTF17. LES results are computed
from 297 cycles and KTF17 results are computed from 104 simulations with parameters drawn from the
posterior distribution.

Period (min) Amplitude (m) Growth time (min) Decay time (min)
LES KTF17 LES KTF17 LES KTF17 LES KTF17

Mean 137 119 619 591 69 66 69 55
Std. Dev. 23 26 142 102 23 15 19 12

Our approach here is to introduce a tunable covariance inflation
factor, � , that is selected so that the posterior uncertainties, as
illustrated by the trajectory ensemble in the right panel of Fig. 6,
are reasonable, and within the expected uncertainties, derived
directly from the LES.

We can use the results of the feature-based inversion to in-
vestigate if the cycles of KTF17 have similar properties as the
cycles extracted from the LES. Specifically, we can consider the
period, amplitude, and growth and decay times of the KTF17 and
LES derived cycles. Here, the period is the duration of the cloud
cycle (without zero padding); the amplitude is the difference be-
tween the maximum and minimum cloud depth reached during a
cycle. 2 The cycle growth time describes how long it takes a
cloud to build up to its maximum cloud depth, and the decay
time describes how long it takes to decay from maximum cloud
depth to its minimum (equivalently, the decay time is equal to

2 We emphasize that the blue line, shown in Fig. 6, is the average of the LES
cycles, but taking into account the zero padding, and stitching the cloud cycles
together at their maximum value. This means that the maximum value of the
blue line in Fig. 6 equals the average maximum cloud depth over all cycles,
which is different from the average amplitude in Table 3. The same reasoning
explains why the average amplitude of KTF17, reported in Table 3, is different
from what one might expect by visually taking the average of the green lines
in Fig. 6.

Table 4
Integrated autocorrelation times (computed from the 2 · 106 samples).
H0 (m) ⌧ (min) T (min) ↵ (days�1 m�2.5)
620 326 539 665

the period minus the growth time). These four properties are
computed for each cloud cycle extracted from the LES and for 104

KTF17 limit cycles, defined by parameters that are drawn from
the posterior distribution. The means and standard deviations of
the four cycle properties are listed in Table 3. We note that the
mean of each cycle property, computed from KTF17, is within one
standard deviation of the mean of the corresponding property
computed from the LES. Moreover, the standard deviations of
the LES and KTF17 cycle properties are also comparable, which
suggests an overall good ‘‘fit’’ of KTF17 to the LES in terms of these
cycle properties.

To report on the statistical accuracy of the MCMC solution,
we list the IACTs, estimated from the 2 · 106 samples, of all
four parameters in Table 4. The IACTs are less than 103, which
indicates that the number of samples is sufficient to accurately
compute posterior means, standard deviations and the MAP, with
an effective sample size in the thousands.

Predator-prey vs LES oscillations:
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H0 = 2063m

⌧H = 120min

T = 33min

[Lunderman et al., Physica D, 2020]



An object-based model for convective cold pool dynamics � 47

if (nlow(x, y) ≥ nn) and (slow(x, y) = �):
nupp(x, y) ! nlow(x, y)
nlow(x, y) ! �
slow(x ± �, y) ! �
slow(x, y ± �) ! �

We refer to the transport of particles from the lower to the upper layer in a set of connected (4-connected,
i.e. involving x ± �, y or x, y ± �) cells as a trigger event. Multiple such trigger events may take place in the
domain during a single time step. During the simulation, we keep track of the number of particles associated
with each trigger event Mt, and the area (number of grid cells) associated with trigger events At.

The particles are moved to the upper layer and classi�ed as non-precipitating during a time tdelay. The
presence of a non-precipitating phase allows larger clouds to develop without immediately introducing a
negative feedback due to cold pool formation. Subsequently, particles are relabeled as rain, and removed
after a number of time steps tdur. In the current work, the life time of particles in the upper layer is a constant
number of time steps, though it may be physically more realistic to couple life time to cloud size [29]. The
life cycle of particles and the mechanism by which particles are moved to the upper layer are illustrated in
Figure 2.

(a) (b)

Figure 2: a) Schematic of the life cycle of particles in the model. b) Illustration of the way in which trigger events are diagnosed
using thresholds for instability (the darkest cells) and for instability triggered by neighbors (one shade lighter).

�.� Rain clusters

Once signi�cant precipitation is initiated, a feedback between the cloud layer and the subcloud layer leads to
organization into cellular patterns.We represent this feedback as the divergence of boundary layer instability
away from regions where precipitation occurs.

A rain cluster is a 4-connected set of grid points in the upper layer that have rain particles in them (this
de�nition is re�ned below). In order to determine these clusters, rain particles in the upper layer are counted
on the grid as well: the number of rain particles in each cell is denoted as nrain. Each cluster has a magnitude
M, which is the number of particles in it, an area A and perimeter p (the number of cell edges at the border
of the cluster). Each cluster is also associated with a center of mass of particle locations. In determining this
center of mass, we use a mean of circular quantities to take into account the periodic boundary conditions.

The cloudpatterns that develop in these simulationsmay consist of hexagonal cells that are connectedvia
their edges, which would lead to very large detected cluster size. In order to identify the individual clusters of
precipitation in such a pattern, the clustering algorithm looks at the relation between area A and perimeter
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p. Starting from a seed cell (which are evaluated in the order in which upper layer particles appeared on
the grid), clusters are grown using a �ood �ll algorithm (this is also known as a paint-bucket �ll, in this
algorithm clusters of 4-connected points are determined). A bu�er is kept with the cells added during the
previous iteration, which initially contains the seed cell. During each iteration the cells neighboring those
in the bu�er are added, provided these new cells hold precipitating particles. At the start of each iteration,
an additional criterion p < �c

p
A, with c a scaling parameter is checked in order to continue (c = � would

correspond to square cells, we use c = �). This prevents elongated structures from appearing as a single rain
cluster.

�.� Precipitation feedbacks

The key feedback that needs to be captured is that the presence of precipitation locally suppresses convection
in the sub-cloud layer, but leads to convergence and enhanced precipitation elsewhere. This is achieved by
adding a velocity to the lower layer particles which moves them away from the precipitating convection. As
a consequence, the release of instability is forced to occur over a small part of the domain. The velocity with
which the particles move away from a rain cloud is given by a function f which operates on the vector ~r
between the rain cluster center of mass and the particle and the magnitude of the rain cluster M.

~v = f (~r,M) (3)

Froman implementationperspective, the crucial property f has tohave is that it is isotropic. The following
implementation is used in the results we discuss:

if (M > m): (4)

~v = α
p
M − m

|~r| + d
~r
|~r|

Here, α is a scaling constant,m is theminimum size of a rain cloud and d serves to limit themaximumve-
locity. Theappearanceof a square root in thenumerator is inspiredby scaling laws for gravity currents, but the
formulation could be re�ned using theoretical results [50–52]. For simplicity and computational e�ciency,
only the rain cluster that corresponds to the smallest value of theweighted distancew = (|~r|+d)/

p
M − m acts

on each particle, taking into account the periodicity of the domain (wmonotonically increaseswith distance).
This approach has been inspired by earlier work in computer-aided architecture [53].

(a) (b)

Figure 3: Illustration of the mechanisms by which a) convergence of air due to clouds acts on the lower layer, which leads to b)
triggering of new convective cells.

Particles tend to gather in regions of strong convergence, and form structures which resemble Voronoi
cells. An illustration of thismechanism and how it leads to triggering is given in Figure 3. As particlesmove in
the course of a time step, the rain cluster that corresponds to the smallest wmay change during the time step
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(a) (b)

(c) (d)

Figure 7: Example of model behavior in the ‘Low_Threshold’ simulation (see text/table 2) a) upper-level particles and rain clus-
ters b) upper-level particle counts and rain clusters and c) lower-level particles counts and rain clusters d) lower-level particle
counts and rain clusters after 1000 time steps. Panels a-c show only part of the domain. The square window indicates the sub-
domain on which further statistics are calculated (see text). Only rain clusters with M > m are shown.

in Figure 7 (dashed lines). It also shows the fraction of cells in the lower layer with particles in them (dotted
line). The number of particles in the lower layer initially grows linearly as the number of particles added
per time step, subsequently it overshoots and it settles at a relatively low value, with only a minority of grid
cells containing any particles in the lower layer. At this point, lower layer particles are e�cientlymoved to the
upper layer in the convergence zones, which allows the system to remain in a state with fewer particles. There
is an atmospheric analogy to such initial overshooting behavior: after the onset of cold pools, the subcloud
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(a) (b)

(c)

Figure 10: Lower layer gridded particle counts nlow and rain clusters (circles, size proportional to M) in a) the ‘High_Threshold’
simulation after 1000 time steps b) the ‘Hysteresis’ simulation after 1000 time steps c) the ‘POCS’ simulation after 400 time
steps. See text for details.

including scale growth, open cell formation, hysteresis and pockets of open cells. The analogues are not
exact, but the model shows that an object-based approachmay be a good pathway towards including organi-
zation in convective parameterizations. The fact that all these behaviors occur suggests that these result from
the long-range interactions in the system, which con�rms the earlier ‘remote control’ hypothesis of Wang et
al. [15] and Yamaguchi and Feingold [16]. It also suggests these behaviors may be found in a wide range of
regimes.

These results encourage further work into object-based methods. Previous studies have, for example,
used subgrid models based on cellular automata to determine updraft fraction and mass-�ux in a convective
parameterization [26]. A key property of the current approach is that it explicitly predicts the local cloud size
population, which couldmake it useful formodels that use a cloud size distribution, which is currently either
assumed [e.g 28, 55] or prognosed with di�erent approaches like a Lotka-Volterra equation [56]. Care would
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p. Starting from a seed cell (which are evaluated in the order in which upper layer particles appeared on
the grid), clusters are grown using a �ood �ll algorithm (this is also known as a paint-bucket �ll, in this
algorithm clusters of 4-connected points are determined). A bu�er is kept with the cells added during the
previous iteration, which initially contains the seed cell. During each iteration the cells neighboring those
in the bu�er are added, provided these new cells hold precipitating particles. At the start of each iteration,
an additional criterion p < �c

p
A, with c a scaling parameter is checked in order to continue (c = � would

correspond to square cells, we use c = �). This prevents elongated structures from appearing as a single rain
cluster.

�.� Precipitation feedbacks

The key feedback that needs to be captured is that the presence of precipitation locally suppresses convection
in the sub-cloud layer, but leads to convergence and enhanced precipitation elsewhere. This is achieved by
adding a velocity to the lower layer particles which moves them away from the precipitating convection. As
a consequence, the release of instability is forced to occur over a small part of the domain. The velocity with
which the particles move away from a rain cloud is given by a function f which operates on the vector ~r
between the rain cluster center of mass and the particle and the magnitude of the rain cluster M.

~v = f (~r,M) (3)

Froman implementationperspective, the crucial property f has tohave is that it is isotropic. The following
implementation is used in the results we discuss:

if (M > m): (4)

~v = α
p
M − m

|~r| + d
~r
|~r|

Here, α is a scaling constant,m is theminimum size of a rain cloud and d serves to limit themaximumve-
locity. Theappearanceof a square root in thenumerator is inspiredby scaling laws for gravity currents, but the
formulation could be re�ned using theoretical results [50–52]. For simplicity and computational e�ciency,
only the rain cluster that corresponds to the smallest value of theweighted distancew = (|~r|+d)/

p
M − m acts

on each particle, taking into account the periodicity of the domain (wmonotonically increaseswith distance).
This approach has been inspired by earlier work in computer-aided architecture [53].
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Figure 3: Illustration of the mechanisms by which a) convergence of air due to clouds acts on the lower layer, which leads to b)
triggering of new convective cells.

Particles tend to gather in regions of strong convergence, and form structures which resemble Voronoi
cells. An illustration of thismechanism and how it leads to triggering is given in Figure 3. As particlesmove in
the course of a time step, the rain cluster that corresponds to the smallest wmay change during the time step
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[Böing, Math. Clim. Weather Forecast., 2016]



Concluding questions:
• What's the minimum number of clouds to get organization?


• What's the role of cloud controlling factors for organization?


• What's the role of N in the predator-prey model?


• What's a useful degree of complexity for a toy model?


• Do we have to understand self-organization to reduce cloud-climate 
uncertainty?


