

DIPARTIMENTO DI INGEGNERIA CIVILE E AMBIENTALE

Numerical diffusion and turbulent mixing in convective self-aggregation

L. Silvestri¹, M. Saraceni¹, P. Bongioannini Cerlini²

¹Department of Civil and Environmental Engineering, University of Perugia ²Department of Physics and Geology, University of Perugia

Centro Interuniversitario di Ricerca sull'Inquinamento e sull'Ambiente - "Mauro Felli"

centro ricerca sul clima

Introduction

L. Silvestri, September 2023

unipo

Numerical diffusion and turbulent mixing in convective self-aggregation

(CTP

for Theoretical Physics

Introduction

L. Silvestri, September 2023

A.D. 1308

unipo

Numerical diffusion and turbulent mixing in convective self-aggregation

west-east (km)

west-east (km)

Introduction

SAM model, Muller and Held (2012)

unipg

SCALE model, Yanase et al. (2020)

aggregated

× scattered

×^{III}

4000

Why the role of mixing in CSA seems to be model dependent?

What happen to CSA if we completely switch off turbulent mixing in different models?

Numerical experiment

	Physical parametrization	
Parametrization	SAM	WRF
Radiation Microphysics	CAM3 (Collins et al., 2006) SAM1MOM (Khairoutdinov & Randall, 2003)	RRTMG (Iacono et al., 2008) Purdue Lin (Chen & Sun, 2002)
Surface layer	Monin-Obukhov similarity	Revised MM5 similarity (Jiménez & Dudhia, 2012)
Subgrid-scale surbulence	3D Smagorinsky	3D Smagorinsky (Smagorinsky, 1963)
PBL	None	Yonsei University, YSU (Hong et al., 2006)
Numerical Schemes		
	SAM	WRF

	SAM	WRF
Time Integration	Explicit 3rd order Adam-Bashfort scheme	Split-explicit 3rd order RK scheme (Wicker & Skamarock, 2002)
Momentum Ad- vection	2nd order centered finite differences	5th order upwind-biased horizontal; 3rd order upwind-biased vertical
Scalar Advection	5th order ULTIMATE-MACHO scheme (Yamaguchi et al., 2011)	5th order upwind-biased horizontal; 3rd order upwind-biased vertical
Explicit mixing	None	6th order numerical diffusion
		Domain: 768 x 768 km

Cs=0 (No lateral mixing)

Domain: 768 x 768 km Grid size: 3 km SST 302 K

L. Silvestri, September 2023

A.D. 1308

unipg

Numerical diffusion and turbulent mixing in convective self-aggregation

FMSE variance budget

unipg L. Silvestri, September 2023

A.D. 1308

Numerical diffusion and turbulent mixing in convective self-aggregation

The Abdus Salam International Centre **(CTP** for Theoretical Physics

The onset of aggregation

A.D. 1308

unipc

The onset of aggregation

unipg

Energy spectra

A.D. 1308

unipo

Energy spectra between 3 and 10 km (initial 5 days)

Sensitivity to horizontal resolution

Numerical diffusion and turbulent mixing in convective self-aggregation

Sensitivity to horizontal resolution

CSA is obtained in SAM3h also with decreasing low cloud amount (also seen in driest regions).

--- SAM0 --- SAM0h ····· SAM3h

• Large changes in the low level circulation

Numerical diffusion and turbulent mixing in convective self-aggregation

Sensitivity to horizontal resolution

SAM3h has a spectrum more similar to that of WRF

• Reintroducing large turbulent mixing at finer resolution ricreates larger and energetic structures.

L. Silvestri, September 2023 Numerical diffusion and turbulent mixing in convective self-aggregation

A.D. 1308

unipc

Conclusions

A.D. 1308

unipo

Why the role of mixing in CSA seems to be model dependent?

Because at <u>COARSE RESOLUTION</u> also <u>NUMERICAL MIXING</u> becomes relevant!!

Shaping the SIZE and the ENERGY of updrafts

LARGER DISSIPATION at small scales (either provided by turbulent mixing or numerical filters) causes LARGER AND MORE ENERGETIC UPDRAFTS which are able to trigger CSA and create LARGE-SCALE HUMIDITY PERTURBATIONS even at finer resolutions.

UNIVERSITÀ DEGLI STUDI DI PERUGIA

Paper under review in JAMES (preprint online): "Numerical diffusion and turbulent mixing in convective self-aggregation"

THANKS FOR YOUR ATTENTION!

BIBLIOGRAPHY:

- Muller, C., Yang, D., Craig, G., Cronin, T., Fildier, B., Haerter, J. O., ... & Sherwood, S. C. (2022). Spontaneous aggregation of convective storms. *Annual Review of Fluid Mechanics*, *54*, 133-157.
- Yamaguchi, T., Randall, D. A., & Khairoutdinov, M. F. (2011). Cloud modeling tests of the ULTIMATE–MACHO scalar advection scheme. *Monthly Weather Review*, *139*(10), 3248-3264.
- Tompkins, A. M., & Semie, A. G. (2017). Organization of tropical convection in low vertical wind shears: Role of updraft entrainment. *Journal of Advances in Modeling Earth Systems*, *9*(2), 1046-1068.
- Shi, X., & Fan, Y. (2021). Modulation of the Bifurcation in Radiative-Convective Equilibrium by Gray-Zone Cloud and Turbulence Parameterizations. *Journal of Advances in Modeling Earth Systems*, *13*(10), e2021MS002632.
- Muller, C. J., & Held, I. M. (2012). Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. *Journal of the Atmospheric Sciences*, *69*(8), 2551-2565.
- Yanase, T., Nishizawa, S., Miura, H., Takemi, T., & Tomita, H. (2020). New critical length for the onset of self-aggregation of moist convection. *Geophysical Research Letters*, *47*(16), e2020GL088763.