Hysteresis and delay behaviour of tropical rain belts

Maxime Colin, Jan O. Haerter, Vishal Dixit

maxime.colin@leibniz-zmt.de
ZMT LEIBNIZ CENTRE
for Tropical Marine Research

Seasonal cycle of the tropical rain belt

Does P follow the thermodynamic variables?

With ERA5 data

Does P follow the thermodynamic variables?

With ERA5 data

Does P follow the thermodynamic variables ?

With ERA5 data

Does P follow the thermodynamic variables ?

[^0]
Idealised studies of the tropical rain belt

Aquaplanet

Many studies with GCM + slab ocean
There are asymmetries of P with respect to the solar forcing.

(Zhou and Xie 2018)

Idealised studies of the tropical rain belt

(Zhou and Xie 2018)

Aquaplanet

Many studies with GCM + slab ocean
There are asymmetries of P with respect to the solar forcing.

With land North of $15^{\circ} \mathrm{N}$

Idealised studies of the tropical rain belt

Aquaplanet

Many studies with GCM + slab ocean
There are asymmetries of P with respect to the solar forcing.

We expect this to be due to ocean memory.

But is there any memory in the atmosphere for the tropical rain belt migration?

(Zhou and Xie 2018)

Idealised simulations with imposed SST

- WRF idealised simulations over a rectangular aquapatch
- Domain: $63^{\circ} \mathrm{S}-63^{\circ} \mathrm{N}$ (lat), 4800 km (lon)
- Grid spacing: 30 km (coarse)
- Periodic BC on x-axis
- Symmetric BC on y-axis (free-slip, no flux)
- With Coriolis
- No convection scheme (explicit) [or Kain-Fritsch]
- Imposed SST, varying with latitude and time: $\Phi_{0, \text { max }}=24^{\circ} \mathrm{N}$
$63^{\circ} \mathrm{N}$

Equator
$63^{\circ} \mathrm{S}$

帾

$$
\operatorname{SST}(\Phi)=T_{0}-\Delta T\left(\sin \Phi-\sin \Phi_{0}(t)\right)^{2}
$$

(Boos and Kuang 2010)

$$
\Phi_{0}(t)=\Phi_{0, \max } \cos \left[\left(t-t_{\text {solstice }}\right) \frac{2 \pi}{T_{\text {year }}}\right]
$$

Spatial organisation

- Some Tropical Cyclonic features
- More convection in summer hemisphere, slightly away from the Equator
- Drier subtropics in the winter hemisphere
- Mid-latitudinal features

Hysteresis in the thermodynamic response to seasonal cycle

Hysteresis in the thermodynamic response to seasonal cycle

Hysteresis in the thermodynamic response to seasonal cycle

Hysteresis in the precipitation response to seasonal cycle

Hysteresis in the precipitation response to seasonal cycle

Hysteresis in the precipitation response to seasonal cycle

Hysteresis in the precipitation response to seasonal cycle

Conclusion

(A) Without any ocean, we still get a hysteresis and delayed seasonal migration of the tropical rain band. So there is a substantial atmospheric memory here.
(B) 3 hysteresis behaviours: asymmetry before and after solstice, sticky ITCZ at the Equator, rapid/delayed monsoon onset/retreat
(C) The tropical rain belt would be best described by a regime shift between a single peak structure and a double peak structure. Conceptually, the ITCZ is not always "a peak".
(D) There are sharp tropical rain band peak jumps, but the rain band envelope has a much smoother variability, hence a smooth-sharp duality.

[^0]: With ERA5 data

