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Trade-wind atmosphere has characteristic vertical structure
e.g., Malkus, 1958, Augstein, 1974, Yin & Albrecht, 2000
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Studying vertical structure teaches us about
physical processes producing this structure
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1 Free troposphere
~ 2-3 km

Cloud layer

A ~0600m

Mixed layer

Mark Rothko, Blue and Grey (1962) v e.g., Malkus, 1958, Augstein, 1974, Yin & Albrecht, 2000




n-c00m lrAnsition layer

Mixed layer

Mark Rothko, Blue and Grey (1962) v e.g., Malkus, 1958, Augstein, 1974, Yin & Albrecht, 2000




Common transition layer idealization (sharp gradients),
In analogy with StCu regimes or dry convective layers

Sharp buoyancy gradients (green)

altitude / m
Q|

Direct numerical simulation results
reproduced from Garcia & Mellado, 2014

Specific humidity / gkg-1

e.g., idealizations made in Lilly, 1968, Arakawa, Schubert,
1974, Betts, 1976, Albrecht, 1979, Stevens 2006
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How representative is this cloud-free structure?
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Cloud-base cloud fraction measured from a lidar-radar synergy
is small, 5.313.2% (Bony et al., 2022), so it appears reasonable

that cloud-free transition layer structure could be the baseline i
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Most of the time, vertical gradients are smoother.

How to define transition layer from profiles?

Apply height definitions, e.g., Canut et al., 2012, to observed thermodynamic profiles
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 Each colored profile
averages ~12 dropsondes
e Black is the campaign-
mean (~810 sondes)
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Evidence for ~150-200 m thick transition layer

between mixed and subcloud layer tops

Cold pools Mixetd layer «—>
Oop
Transition layer

- mixed layer (q,©0,RH)
2- Distributions calculated
from dropsondes

subcloud layer (©,)

density/10°

150 500 710 1000
Vertical height / m

» Associate region between mixed layer and subcloud layer tops — that is better-mixed in 6, than g, ¢

individually — with transition layer

 Methodology for identifying transition layer given in Albright et al., Observed subcloud layer moisture

and heat budgets in the trades, JAS, 2022, + implications for modeling subcloud layer thermodynamics
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Transition layer thermodynamic gradients differ from those in mixed and

cloud layers (810 dropsonde profiles composited by layer; mean depths)
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What produces the observed transition layer structure
— thicker and with smoother gradients —
compared to jump structure?



Does life cycle (condensation-evaporation dipole) of very small clouds

smooth vertical gradients in transition layer?

 About 60% of cloud bases (three-
hourly cellometer data) and ~75%
7084 ‘ o LCLs (from sondes) below transition
\ Drier, & T")I layer top
el A W n®—wamer | 24 = * Another way of defining the transition
layer is between cloud base and
maximum cloud-base cloudiness
level (cf. Vogel et al., 2022)

altitude / m

Cf. cloud based above the transition
layer in Malkus, 1958; Augstein, 1974,
but within transition layer in Neggers
et al., 2009, Gentine et al., 2013

15.33
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Test using denial of mechanism —
examine transition layer structure
In large clear-sky areas

defined:

1. by eye, within patterns of cloud organization,
identified from satellite images

2. as cloud-free over ~200 km of flight path (15
minutes of flying) using cloud flags and cloud
top heights from WALES lidar

3. using large-eddy simulation output from
Dauhut et al., 2022
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Sharp gradients exist, but rarely, and in large clear-sky areas
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Sharp gradients exist, but rarely, and in large clear-sky areas
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Very shallow clouds are ubiquitous.

Are they associated with smoother gradients?

oth cloud bases
very shallow clouds

L T N deeper shallow clouds
-dc-: approximate transition layer location
—
—
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o000 850 1900 3000
WALES cloud top height / m (lidar data)

Two cloud populations seen in satellite retrievals (e.g., Genkova et al. 2012, Leahy et al., 2012, Mieslinger

et al., 2019), but with ~250-500 m observational uncertainties. Cf. also Vial et al, 2023 .



Proxy for transition layer structure

Select sharpest vertical
gradient b/t 300-800 m
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Large clear-sky areas (red) exhibit

stronger vertical gradients

Select sharpest vertical

gradient b/t 300-800 m
e 0t clear-sky swaths

e=mm=cloud tops below 1.3 km
e c|car-sky swaths (13% of sondes)
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A similar picture in large-eddy simulation output

Integrated cloud liquid water, 02 Feb 1400 UTC
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LES simulation output from Dauhut et al., 2022 QJRMS,
100 m (horizontal); 40 m (vertical) 8



A similar picture in large-eddy simulation output

Maxim humidit vrtical gradient over 40 m, 02 Feb 1400 UTC

o),
-

AN
-

Distance (km)

N
-

- ——
——

) e N,y
e ‘.-’-». e

0 20 40 60 80 100 120 140 160 180 200
Distance (km)

LES simulation output from Dauhut et al., 2022 QJRMS,
100 m (horizontal); 40 m (vertical)

Find weak correlation b/t transition layer gradients & mesoscale subsidence (max. r~0.3 with @,km) 9



Larger transition layer gradients with distance to cloud center of mass,
evolving over time; confirmed by random forest analysis

2 hrs €— Integrated cloud liquid water, 02 Feb 1400 UTC
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Inferences from EURECA4A observations and LES

1. Jump-like transition layer structure found in large (O(200 km)) cloud-free areas

2. Strength of transition layer gradients only weakly associated with subsidence
strength, maximizing at 2 km (r~0.3)

3. Shallow population of clouds creates transition layer structure by a

condensation-evaporation dipole — active role for very shallow clouds that is
missing from our previous conceptualization
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Inferences from EURECA4A observations and LES

Jump-like transition layer structure found in large (O(200 km)) cloud-free areas

Strength of transition layer gradients only weakly associated with subsidence
strength, maximizing at 2 km (r~0.3)

Shallow population of clouds creates transition layer structure by a
condensation-evaporation dipole — active role for very shallow clouds that is
missing from our previous conceptualization

Inferences from mixed layer theory and mixing diagrams suggest that differences
In cloud-free and cloudy transition layer structures do not affect the rate of
entrainment mixing, but rather the properties of the air incorporated into the mixed
layer, primarily as a moistening (not shown)
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Connections to cloud organization and shallow to deep cloud transition

1. Interplay between very shallow and deeper shallow clouds, with each population growing its
own layer (cf. Riehl, 1951, Stevens, 2007). Do smaller clouds make it easier for larger clouds to
form (cf. Neggers et al, 2015) and organize, and on what timescale?

£)

Trade-wind inversion

Riehl et al, 1951 Photo by Frédéric Batier, 2020
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1.

2.

Connections to cloud organization and shallow to deep cloud transition

Interplay between very shallow and deeper shallow clouds, with each population growing its
own layer (cf. Riehl, 1951, Stevens, 2007). Do smaller clouds make it easier for larger clouds to
form (cf. Neggers et al, 2015) and organize, and on what timescale?

* Additional contribution to entrainment mixing based on ability to detrain condensate into the
overlying stable layer, in addition to surface buoyancy fluxes, wind shear, radiative cooling

* Cloud-free mixed layer theory, such as for entrainment rate closures, is still skillful with
appropriate modifications reflecting finite-thickness transition layer (cf. Albright et al., 2022)
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Connections to cloud organization and shallow to deep cloud transition

1. Interplay between very shallow and deeper shallow clouds, with each population growing its
own layer (cf. Riehl, 1951, Stevens, 2007). Do smaller clouds make it easier for larger clouds to
form (cf. Neggers et al, 2015) and organize, and on what timescale?

2.

e Additional contribution to entrainment mixing based on ability to detrain condensate into the
overlying stable layer, in addition to surface buoyancy fluxes, wind shear, radiative cooling

* Cloud-free mixed layer theory, such as for entrainment rate closures, is still skillful with
appropriate modifications reflecting finite-thickness transition layer (cf. Albright et al., 2022)

3. Stability conditions required for spontaneous growth of mesoscale moisture fluctuations and to
power shallow circulations, e.g., (9/02)(1', /1°y) > 0, (cf. Eq. 26 in Janssens et al., 2023, and

non-dimensional ‘Chikira parameter’, Eq. 41 of Bretherton and Blossey, 2017), appear to hold in
transition layer
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Thank you

1. Interplay between very shallow and deeper shallow clouds, with each population growing its
own layer (cf. Riehl, 1951, Stevens, 2007). Do smaller clouds make it easier for larger clouds to
form (cf. Neggers et al, 2015) and organize, and on what timescale?

2. .
e Additional contribution to entrainment mixing based on ability to detrain condensate into the
overlying stable layer, in addition to surface buoyancy fluxes, wind shear, radiative cooling
* Cloud-free mixed layer theory, such as for entrainment rate closures, is still skillful with
appropriate modifications reflecting finite-thickness transition layer (cf. Albright et al., 2022)

3. Stability conditions required for spontaneous growth of mesoscale moisture fluctuations and to
power shallow circulations, e.g., (9/02)(1', /1°y) > 0, (cf. Eq. 26 in Janssens et al., 2023, and

non-dimensional ‘Chikira parameter’, Eq. 41 of Bretherton and Blossey, 2017), appear to hold in
transition layer
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Additional slides
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Does life cycle (condensation-evaporation dipole) of very small clouds

smooth vertical gradients in transition layer?

 About 60% of cloud bases (three-
hourly cellometer data) and ~75%
7084 ‘ o LCLs (from sondes) below transition
\ Drier, & T")I layer top
el A W n®—wamer | 24 = * Another way of defining the transition
layer is between cloud base and
maximum cloud-base cloudiness
level (cf. Vogel et al., 2022)

altitude / m

Cf. cloud based above the transition
layer in Malkus, 1958; Augstein, 1974,
but within transition layer in Neggers
et al., 2009, Gentine et al., 2013

15.33
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(1) Cloud-free boundary layer . Coudy convective boundary layer
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Jumps in Thibaut’s LES
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Do differences In transition layer structure matter for

mixed layer state & surface fluxes?

* |Inferences from mixed layer theory and mixing diagrams (not shown,
following Paluch, 1979) suggest that the observed transition layer
structure does not strongly affect the

* Rather, it influences the properties of the air incorporated into the
mixed layer, primarily as a moistening
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Contributions to energetics of entrainment mixing

dh F 0 Convert turbulence energy
F—— — ———— to potential energy
dt Ale e.g., Ball, 1960, Lilly, 1968, Betts, 1973, Tennekes,
|4 1973, Deardorff, 1974, Stull, 1976, Stevens 2006

‘Harvesting’ some portion of
surface turbulence flux to do
entrainment work

Surface turbulence flux 33



Contributions to energetics of entrainment mixing

&~

dh A eF 0 Convert turbulence energy
E = — 4 to potential energy

dt AIH e.g., Ball, 1960, Lilly, 1968, Betts, 1973, Tennekes,
v 1973, Deardorff, 1974, Stull, 1976, Stevens 2006

‘Harvesting’ some portion of
surface turbulence flux to do

entrainment work Ae F 0, AG

V Ae: entrainment efficiency of surface
turbulence source (constant)

Ae=0.27 0.47

Surface turbulence flux 34



Contributions to energetics of entrainment mixing

&~

dh AeF 0
E=—

‘Harvesting’ some portion of
surface turbulence flux to do

entrainment work A F
et 0,

Surface turbulence flux

dr AD,

A6G

Vv

Convert turbulence energy
to potential energy

e.g., Ball, 1960, Lilly, 1968, Betts, 1973, Tennekes,
1973, Deardorff, 1974, Stull, 1976, Stevens 2006

Ae: entrainment efficiency of surface
turbulence source (constant)

Ae20.43*

*Albright, A. L., Bony, S., Stevens, B., & Vogel, R.
(2022). Observed subcloud layer moisture and
heat budgets in the trades. JAS 2022.
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Cloud liquid water flux contribution to A ~ 0.4

Zero-order model First-order model ‘Cloud boost’
cf. Garcia, Mellado, 2014 cf. Stevens, 2007
Z A A

entrainment zone

ml

mixed layer
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A short side project



Can we predict transition layer gradients based upon

environmental variables?

9 variables considered: {g, 0, wind speed in mixed layer; vertical velocity at different altitudes; integrated
cloud liquid water content; distance to cloud ‘center of mass’, cloud base height, cloud top height}
 Random forest or XGBoost (machine learning) algorithms

100 m (horizontal); 40 m (vertical) model output

1.5 —— ground truth
—— predictions
o
i 1.0 R2(train)=0.96
5 R2(test)=0.71
0

Preliminary take-away:

00 Algorithm has some predictive skill for
0.0 0.5 1.0 1.5 2.0 maximum transition layer vertical gradient
maximum transition layer gradient / g/kg/40 m
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Most important environmental variables:

but, a cold pool imprint rather than a predictive feature?

Visualizing Important Features

vied aver o |

Distance to cloud
center of mass

Mixed layer g
Mixed layer W

10 m wind speed

Features

W at 2000 m
Cloud top height

Integrated cloud
liquid water

Cloud base height

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Feature Importance Score
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Cold pool signature? Regions 6 < 297.5 in contours

Potential Temerature at 480 m

MaX|mum humidity vertical radlent over 40 m, 02 Feb 1600 UTC
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Skill increases when re-running analysis outside cloud region,

and distance to cloud center of mass is most important variable

Visualizing Important Features

dist center
— ground truth Integrated cloud
.. liquid water

2 predICtIOnS cloud_base height
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OO 05 o 10 15 20 0.00 0.05 0.10 0.15 0.20

maximum transition layer gradient / g/kg/40 m Feature Importance Score
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Q: Can we use machine learning
techniques to identify important
features associated with transition
layer gradients?

 LES simulation output: 100 m (horizontal), 40 m
(vertical) Dauhut et al., 2022 QJRMS

* Target: transition layer gradient, quantified as
maximum first difference (over 40 m) b/t 400-1000 m

+ 9 features considered: g, 8, wind speed at 500 m;
vertical velocity at 500 m or 2km; integrated cloud
liquid water content; distance to cloud ‘center of
mass’, cloud base height, cloud top height

 Random forest or XGBoost (machine learning)
algorithms used because they are more interpretable
than deep learning, and allow for nonlinear
relationships unlike multiple linear regression

Integrated cloud liquid water, 02 Feb 1400 UTC
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Initial approach has predictive skill, but feature importance

reflects cold pool signature, rather than meaningful predictor

100 m (horizontal); 40 m (vertical) model output

Visualizing Important Features

Mixed layer 0
1.5 — grou nd truth Distance to cloud
o center of mass
—— predictions Mixed layer g
> .
+— . Mixed | W
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0.5 . |
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OO Cloud base height
OO _ 0.5 S 1 O _ 1 5 - 2.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30
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43



Distance to cloud emerges as most important feature when

considering areas outside cold pools*, and skill improves

*Considered, simply, areas where 0s,,,, < 297.5 (white contours) as
those influenced by precipitation and cold pools
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