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Overall tracking steps:

- Cloud areas of the current
image are compared to all the
CEs from the next two available
images
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TAMS (v2.0): Package & Website ﬁ pgthOﬂ O Jupyter
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User-friendly, open-source, & publicly available -

TAMS (Tracking Algorithm for Mesoscale Convective Systems) in Python and with more flexibility.

The original TAMS is described in NUfiez Ocasio et al. [1]. Nufiez Ocasio et al. [2] applied TAMS to African

* |Install with pip or conda/mamba TAMS

Q@ Search the docs ... i
Installing

EXAMPLES TAMS is available on conda-forge.

sample satellite data

* Conda environment recommended - o

APl v
Differences between TAMS v1.0 and DeVEI Opme nt insta ”
TAMS v2.0 . . . )

If you want to modify the code, you can first clone the repo and then do an editable install to the dev
GitHub &

=1
o
@

environment:

git clone https://github.com/knubez/TAMS. git

* Grid-independent identification and tracking y
(satellite and model data) = D R

References
H - . .
 TAMS is also able to assign rain (or any other e o e
I O u d e I e m e nt O r IVI CS) Zi::123?:17?;;\;}:?;1/5:;r;aols:metso( org/view/journals/mwre/148/2/mwr-d-19-0070.7.xml,

Theme by the Executable Book Project

variable) to each object

* Output format: GeoPandas GeoDataFrame  Nufiez Ocasio and Moon 2023 (in prep)
) GeoPandas
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Motivation

* 90% of Sahelian rainfall events
produced by MCSs

African easterly waves

* MCSs over Africa are intrinsically oy 2 IL“i-_.T;lﬂ \
related to AEW growth and I S e ? o
I T < O 9. { S thmEsJJP ,
propagation W A §\ % = _
i*mﬂ'iﬂ&rdlf :,Ln)Ere:.thsybtprns a m -E A »

50 <50 =40 =30 =20 <10 1] 10 0 "c

* MCSs are modulated by AEWs that The COMET Prageam @ ELRETSAT 207113 Mevyhms
become tropical cyclones
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MCSs of Developing AEWs independent of the zonal phasing
(longitude), are latitudinally in phase with the AEW trough

tl Developing AEW-MCS systems Non-developing AEW-MCS systems
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DAEWSs have a larger fraction of organized
MCSs over Central and West than NDAEWSs
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NASA

RF01 - September 6

RF02 - September 7

RF04 - September 10

RF06 — September 15

RFO7 - September 16

RFO5 - September 14

RF08 — September 20

Convective Processes Experiment — Cabo Verde

RF09 — September 22

RF10 - September 23

RF11 - September 26

RF12 - September 29

RF13 - September 30
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Mechanisms proposed that support & initiate
Nocturnal Offshore Convection

1) Low-level convergence, resulting from the interaction 2) Gravity waves forced by the heat source of the
of the land breeze and baCkground low-level westerlies diurnal mixed |ayer (Mapes 2003a’b)

c) | All e\fents

- -~ - L = e

- i e i o |
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]
e Similar results for Borneo (Houze et al. 1981) = %
* Similar low-level convergence has also been found over South — \Q\

China (Park et al. 2011) and East Asia (Ohsawa et al. 2001)
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Mechanisms proposed that support & initiate

Nocturnal Offshore Convection

Recent work by Peatman et. al 2023 suggests that both gravity waves and
land breeze can be responsible for offshore propagation

Gravity waves mainly triggered isolated rainfall

Offshore-propagating density currents (either due to the land breeze and/
or cold pools). The motion of this offshore density current coincides with
the squall line propagating offshore.

They highlight the fact that even with high-resolution modeling it is difficult
to distinguish between land breeze and cold pools
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Figure from Peatman et al. 2023



RF9: Evolution & Observations of Nocturnal
Offshore Convection
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RF9: Evolution & Observations of Nocturnal
Offshore Convection
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RF9: Night of September 21st, 2022
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Reanalysis evidence of both LB (propagating offshore with a maximum at 2022-09-21 22:00 UTC and WAM retracting
from coast




RF9: Evolution and Observations of Nocturnal Offshore
Convection

* West African Monsoon and Land Breeze Observation -
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Research Flight 9: The role of the AEW
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Nufiez Ocasio et al. 2023 (in prep)

* Temporary separation of MCS from AEW close to the coast and decrease in propagating speed of the MCS
relative to wave indicate a change from AEW-supported propagation to offshore-supported propagation due to
coastal mechanisms (density current form LB and/or cold pool)

MCS speed and position relative to wave are significantly different across developing and non-developing
systems (Nufez Ocasio et. al 2020)
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A Multi-MCS-Tracking Intercomparison Study for MCSs

over South America

g) IMERG ForTraCC

j) IMERG TAMS

m) IMERG PyFLEXTRKR  p) IMERG TOOCAN

a) IMERG MOAAP

d) IMERG tobac

e) WRF4km tobac h) WRF4km ForTraCC k) WRF4km TAMS n) WRF4km PyFLEXTRKR q) WRF4km TOOCAN

MCS initiation frequency [nr. per year]

difference inMCS initiation
frequency [nr. per year]
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Prein et al. 2023 (in review)
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RESEARCH
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SOUTH AMERICA AFFINITY
GROUP

South America Affinity Group (SAAG)

Overview

Meeting Minutes

Participants

Observations

Model Output

Additional Resources

Deep Convection Working Group
MAAG Working Group

SAAG Hydro Working Group

RELATED PROJECTS

The evaluation of simulated MCS characteristics is less impacted by
the tracker formulation and all trackers agree that the kilometer-
scale model can capture MCS characteristics well across different
South American climate zones.

MCS frequency differences can be large and vary in sign in many
regions.
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a) IMERG b) WRF4km

set ¢ Applying different trackers results in a wide
0 g range of MCS to total precipitation fractions
with PyFLEXTRKR showing the largest

J>.
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average precipitatiol

) IMERG MOAAP ) IMERG tobac |IMERG ForTrac; " IMERGTAMS ) IMERG PYFLEXTRKR __r) IMERG TOOCAN g%g Contributions and TOOCAN and ForTraCC
. showing the smallest.
7()g
* There is also an agreement among trackers that
the simulations are underestimating the
0 fraction of precipitation from MCSs over large
’ parts of the study region.

F 7N:  PyFLEXTRKR TOOCAN
Prein et al. 2023 (in review) B\ TAMS & |
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Summary

* TAMS is a grid-independent and open-source tracker that have been use to study AEW-
MCS interactions as it considers shear propagation (TAMS is grid independent and is an

open source tool)
O knubez

* African Easterly Wave and Tropical cyclogeneses

« WAM-LB mechanism: Over western Africa this mechanism can support and maintain
offshore convection, observational evidence and reanalysis does not support convective
initiation from it

* MCS Intercomparison Study: The tracker formulation has substantial impacts on MCS
characteristics such as frequency, size, duration, and MCS contribution to total
precipitation

knocasio@ucar.edu



Journal of Advances in
jAMES Modeling Earth Systems®

RESEARCH ARTICLE
10.1029/2022MS003181

Key Points:

« The Model for Prediction Across

Scales is capable of reproducing the

evolution and growth of pre-Helene

from an African easterly wave

Boundary-layer moisture fux was key

in Helene's moisture-driven tropical

cyclogenesis (TCG)

« Helene's TCG had convection and
moisture co-located with the wave
vorlex. indicative of moisture-vortex
instability
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15, €2022MS003 181. hups:/fdoi.
org/10.1029/2022MS003 181

ADVANCING

AU s,

&

African Easterly Wave Evolution and Tropical Cyclogenesis in
a Pre-Helene (2006) Hindcast Using the Model for Prediction
Across Scales-Atmosphere (MPAS-A)

K. M. Nitiiez Ocasio' ) and R. Rios-Berrios'

'National Center for Atmospheric Research, Boulder, CO, USA

Abstract Tropical cyclogenesis (TCG) remains an elusive phenomenon partly due Lo the limited
understanding of complex water vapor-convection-wave interactions. The Model for Prediction Across
Scales-Atmosphere (MPAS-A) was used to study the TCG of the African easterly wave (AEW) that became
Hurricane Helene (2006). The two main objectives were: (a) evaluate the capability of MPAS-A to simulate
TCG from an AEW by comparing MPAS-A—initialized with the Integrated Forecasting System (IFS) and
the Global Forecast System (GFS)—with observations together with reanalysis and, (b) use the hindcast to
il igate the role of moi: in the hani that led to Helene's TCG. The more intense GFS-initialized
pre-Helene was slower propagating and was associaled with a weller and stronger monsoon when compared to
both the IFS-initialized simulation and observed. TCG occurred when net moisture flux within the boundary
layer toward the center of the wave i d i ly. The lysis pre-g is top-heavy vertical mass
flux profile transitioned to a bottom-heavy profile during TCG, whereas the simulations had top-heavy and
bottom-heavy profiles si ously, ing from a more-intense and fast-occurring TCG than in the

lysis. Moi vortex i helped explain the vertical mass fluxes and the co-location of convection,
‘moisture and wave vortex d ing to be an applicable theoretical model for TCG. Moisture mode was
tested as a diagnoslic tool for AEW evolution and TCG. The case exhibited some moisture mode properties.
and it is proposed that AEWs become more moisture-mode like once reaching western Africa and during TCG.
An AEW TCG pathway is proposed.

MPAS DATA: 15-km horizontal grid global
simulations post-processed

O
NCAR is sponsored by INGf
National Science Foundation * **
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AEW hindcast using the Model for Prediction Across Scales-
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Moisture Sensitivity of MCSs over Tropical Africa
and Eastern Atlantic

Approximate mesh resolution (km)
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" |nitialization at 1200 UTC September 8, 2006: ERA5

* Limited area MPAS with a 15-3km variable mesh, 55 vertical levels, explicitly
resolved deep convection

" Four moisture-sensitivity experiments altering initial and hourly lateral boundary RH
at each pressure level
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MOIST: 20%
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Nufez Ocasio et al. 2023 (in review)
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Install TAMS today! TAMS’s Developers

knocasio@ucar.edu

( > knubez
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https://tams.readthedocs.io/en/latest/

zachary.moon@noaa.gov

https://github.com/knubez/TAMS

@ python’ O
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