Shallow circulations rooted in shallow convection across the trade-wind mesoscales

Martin Janssens Geet George Hauke Schulz Thibaut Dauhut

Photo by Anna Lea Albright during EUREC⁴A

WAGENINGEN UNIVERSITY WAGENINGEN UR TUDEIft Idealised large-eddy simulation of trade cumuli (Cloud Botany)

Jansson et al., (in revision), JAMES

150 km

Bretherton & Blossey (2017), JAMES Janssens et al. (2022), JAS

*Shallow Mesoscale Overturning Circulation

Is any of this real?

Bretherton & Blossey (2017), JAMES Janssens et al. (2022), JAS

Okay, if SMOCs are real, can we simulate them?

ICON LES ($\Delta x = 312$ m) of the entire North-Atlantic downstream trades, for two months

Schulz & Stevens (in revision), JAMES

Can we simulate SMOCs? Yes!

What causes the simulated SMOCs?

Hypothesis from idealised LES SMOCs are formed by convective heating, under WTG

Approach

Study budgets for mesoscale fluctuations in $s_{lv} = c_p T + gz - L_v q_l + 0.608 c_p T_0 q_t,$ s'_{lv_m}

SMOCs — Convective heating, clouds

Sandrine, Denser, larger, stronger Nicolas thermals near cloud base? SMOCs Convective heating, clouds

External Denser, larger, stronger forcing Denser, larger, stronger thermals near cloud base?

		External forcing		Denser, larger, st thermals near clo	ronger oud base?
Mesos moistu fluctua	scale — ure ations	SMOCs		Convective k clouds	neating,
	Denser, larger, stronger thermals near cloud base throughout the transition layer?		Entra in the	inment buffering e cloud layer?]

Shallow circulations (are real and simulatable) rooted in shallow convection (in convective heating) across the trade-wind mesoscales (in WTG)

> What controls convective heating patterns? How do SMOCs and water vapour interact? What roles are played by radiation and rain evaporation?

> > martin.janssens@wur.nl

WAGENINGEN UNIVERSITY KUDElft

Photo by Anna Lea Albright during EUREC⁴A

