High-resolution Coupled Mesoscale to Microscale Simulations of Mixed-Phase Convective Clouds Observed during the Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE)

The goal of multiscale simulations was to study the evolution of a cold air outbreak with as few assumptions as possible

- How do multi-scale interactions drive the organization of mesoscale convective circulations during CAOs over open water?
- What is the role of mixed-phase cloud processes in the context of mesoscale cellular convection structure and evolution?

Atmospheric Boundary Layer Structures During a Cold Air Outbreak
Stably stratified ABL
Convective AB
Convective helical rolls Transition
Convective cells
Possibly decoupled layers

Geerts et al. (2022, BAMS)
Peng Wu \& Tim Juliano

The outer LES domain spans the entire length of the cold air outbreak

LES is needed to resolve well convective structures

Mesoscale Simulation - 1 km grid cell size

LES - 150 m grid cell size

We filtered LES to mesoscale resolution to assess how well are convective structures resolved in mesoscale simulations

- Horizontal slices show that dynamics and thermodynamics are closely linked
- Cell cores are defined by low-level horizontal convergence and strong column updrafts
- Low-level divergence is tied to cold pools that develop from sublimation of falling snow and graupel
- Compared to filtered LES, YSU produces cells that have wider updraft cores, weaker low-level convergence, and warmer nearsurface air in convergent regions

2020-03-13_12_00_00 Native LES

-269.75

We used wavelet transform to analyze the structure of open cells

- Allows one to analyze dominant modes of variability over time by transforming 1-D time series into 2-D time-frequency space
- Wavelet transform preferred over other spectral techniques (e.g., windowed Fourier transform) when predetermined scaling may not be appropriate due to wide range of dominant spatial scales
- Morlet wavelet function with nondimensional frequency of 6
- Continuous wavelet transform

The wavelet scale is varied and translated along the localized time index to reveal amplitude of a feature versus space as well as change in amplitude with time

$$
W_{n}(s)=\sum_{n^{\prime}=0}^{N-1} X_{n^{\prime}} \downarrow \dot{\psi} *\left[\frac{\left(n^{\prime}-\grave{n}^{\prime}\right) \delta t^{\downarrow}}{s}\right] \quad \begin{aligned}
& \text { time } \\
& \text { sample }
\end{aligned}
$$

Informative review by Torrence and Compo (1998, BAMS); we used PyCWT python package
$3^{\text {rd }}$ Workshop on Cloud Organization and Precipitation Extremes

Near the surface V velocity has significant energy at low frequencies

Significant variance at low frequencies for V and θ is related to cold pools

V at $\sim 115 \mathrm{~m}$
ASL

$\begin{array}{llll}100 & 200 & \begin{array}{ll}300 \\ \text { Time (min) }\end{array}\end{array}$

We compared LES results with observations at Andenes by processing LES output using CR-SIM

https://arm-development.github.io/comble-mip/README.htm|\#visualization-tools

COMBLE Model-Observation Intercomparison Project Cookbook

Project Information
Goals and Hypotheses

Participants
List of Planned Participants

How-To
Apply for Elevated JupyterHub Access
Contributers Guide

Model Setup \& Timeline
Main Model Configuration
Requested Model Outputs
Timeline

Input Conversion Notebooks

: = Contents
Background \& Motivation
Model Inputs
Python Notebooks
Authors

Authors
Tim Juliano, Florian Tornow, and Ann Fridlind - Intercomparison development and definition Abigail Williams, Lynn Russell, Yijia Sun, Caniel Knopf - Aerosol analysis Max Grover, Scott Collis, Kyle Dumas, Monica Ihli - Infrastructure development

Contact: Tim Juliano: tjuliano (at) ucar.edu OR Florian Tornow: ft2544 (at) Columbia.edu
https://arm-development.github.io/comble-mip/timeline.html

Timeline

AttentionReady to make your model outputs accessible to other MIP participants? Please refer to this page to learn how to upload your model outputs to the repository.

Stage	Product	Due Date
Phase I	- SCM/small-domain LES, liquid-only	Nov. 15, 2023
	- SCM/small-domain LES with ice	Nov. 15, 2023
	- Large domain LES with ice	Feb. 1, 2024
Phase II	- SCM/small-domain LES, liquid-only	Nov. 15, 2023
	- SCM/small-domain LES with ice	Nov. 15, 2023
	- Large domain LES with ice	Feb. 1, 2024

Thank you!

Questions

branko@ucar.edu

