ICTP School of Medical Physics for Radiation Therapy: Dosimetry and Treatment Planning for Basic and Advanced Applications

SBRT: RADIOBIOLOGY RATIONALE

Lidia Strigari,

Dept. of Medical Physics

IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy

21 September 2023

LEARNING OBJECTIVES

- What is the rationale of SBRT?
- Dose-effect relationships
 - What effect does occur increasingly at higher doses per fraction?
 - Are "Rs" of radiotherapy still relevant to SRS/ SBRT regimens?
- LQ models for SBRT
 - Rational of prescription schemes
 - Does the LQ model work at high doses?
- Proposed radiobiological models for SBRT
- Radiobiology of SBRT in practice
- Latest trends

"Technology that uses elements of 3D conformal therapy in addition to stereotactic targeting while incorporating systems for decreasing the effects of lung and other organ movements that would otherwise translate into target motion."

- The Rationale
 - Highly **ablative** dose in a few fractions (typically < 5 fractions)
 - Promotes cell death, while allowing time for repair and repopulation of normal tissues.

<u>SBRT</u>

Began as an extension of SRS and shares some of the same characteristics.

- Hypofractionation with markedly increased dose per fraction.
- Significantly reduced elapsed treatment time (Timmerman et al. 2006)
- Dramatic reduction in size of the treatment volume.
- Effective immobilization and tumor motion management.

– A high level of confidence in the accuracy and precision of treatment delivery practices. (AAPM Task Group Report 101: Stereotactic body radiation therapy)

SBRT

Attempts to mimic the **dose distribution** of SRS.

- Prescribed to an isodose
 line with 70 –90% (usually
 80%)
- High dose/fx
- Conformal to PTV

FIGURE 1. The left panel shows a schematic drawing of intracranial stereotactic radiosurgery with the Gamma Knife (Elekta, Norcross, GA). The stereotactic frame is fixed with screws into the skull. The right panel shows a schematic drawing of extracranial stereotactic radiation therapy with linear accelerator. The patient is fixed in the stereotactic body frame.

- High precision
- High accuracy

THE TARGET IN RADIOTHERAPY

- The bulk tumour
 - may be able to distinguish different parts of the tumour in terms of radiosensitivity and clonogenic activity
- Confirmed tumour spread
- Potential tumour spread

- Large mass (1kg) = 10^{12} cells need three orders of magnitude \rightarrow more cell kill
- Palpable tumour (1cm³) = 10⁹cells !!!
- Microscopic tumour, micrometastasis = around 10⁶ cell need less dose

□ Rationale of SBRT

"IF YOU CAN'T SEE IT, YOU CAN'T HIT IT, AND IF YOU CAN'T HIT IT, YOU CAN'T CURE IT"

PTV MARGINS IN SBRT

https://www.umcutrecht.nl/en/Research/Research-centers/UMC-Utrecht-Center-for-Image-Sciences/Research-programs/ MR-Radiotherapy/MRI-guided-Radiotherapy/MRI-guided-proton-therapy • GTV

To be delineated by the physician using multimodality imaging

- ITV
 - 4DCT /SBRT optimal for target definition
- PTV
 - ITV + margin expansion according to the selected delivery strategy

HALLMARKS OF SBRT

- Rapid **fall-off of radiation** dose at the periphery of target
 - Minimal dose to surrounding tissues
- High dose conformity
- Small beams

Accurate dose calculation algorithms are mandatory (AAPM 101)

THE LINEAR QUADRATIC MODEL

" α -damage" $\rightarrow \alpha D$

" β -damage" $\rightarrow \beta D^2$

The LQ model is simple and convenient better fit in the low dose–high survival region:

- α (lethal/non-repairable) & β (sub-lethal/reparable)
- α/β ratio for early and late reactions in human normal tissues consistent with results from experimental models

THE LINEAR QUADRATIC MODEL

• Cell survival:

single fraction: $SF = exp(-(\alpha D + \beta D^2))$ (n fractions of size d: $SF = exp(-n (\alpha d + \beta d^2))$

• Biological effect:

 $E = -\ln (SF) = \alpha D + \beta D^{2}$ $E = n (\alpha d + \beta d^{2}) = nd (\alpha + \beta d) = D (\alpha + \beta d)$

BIOLOGICAL EFFECTIVENESS

 $E/\alpha = -\ln(SF)/\alpha = BED = (1 + d / (\alpha/\beta)) * D = RE * D$

- BED = biologically effective dose, the dose which would be required for a certain effect at infinitesimally small dose rate (no beta kill)
- RE = relative effectiveness

LQ MODEL

Are the lesions large or small?

TCP vs N0 (i.e., number of clonogenic cells)

EXTENSION OF LQ MODEL TO INCLUDE TIME:

$$E = - \ln S = n * d (\alpha + \beta d) - \gamma T$$

Including T_k ("kick off time") which allows for a time lag before the tumour switches to the fastest repopulation time:

BED =
$$(1 + d / (\alpha/\beta)) * nd - (ln2 (T - T_k)) / \alpha T_p$$

SBRT 4Rs REVISITED

Reoxygenation: When tumors are treated with SBRT the intra-tumor environment will become hypoxic leading to secondary cell death due to vascular damage

• Repair: Vascular damage and ensuing chaotic intra-tumor environment may significantly hinder repair of radiation damage

• Redistribution: after irradiation with dose of >15-20 Gy, cells are indefinitely arrested in the phases of cell cycle where they were irradiated and undergo interphase cell death

Repopulation: repopulation of tumor cells will not be substantial during the course of SBRT (1-2 weeks)

Differential biological effect between tumor and normal tissue is largely gained through minimization of normal tissue volume in SBRT

BED

Assuming an $\frac{\alpha}{\beta} = 10$ Gy, what is the LQ BED of 50 Gy in 5 fractions?

- a) 50 Gy
- b) 60 Gy
- c) 100 Gy
- d) 105.5 Gy
- e) 150 Gy

$$\mathsf{BED}_{\mathsf{LQ}} = \mathsf{Nd}\left[1 + \frac{d}{\alpha/\beta}\right]$$

BED

Assuming an $\frac{\alpha}{\beta} = 10$ Gy , what is the LQ BED of 50 Gy in 5 fractions?

$$\mathsf{BED}_{\mathsf{LQ}} = \mathsf{Nd}\left[1 + \frac{d}{\alpha/\beta}\right]$$

- a) 50 Gy
- b) 60 Gy
- c) 100 Gy c) 50 Gy in 5 fractions = 50(1+10/10)=50(1+1)=100 Gy
- d) 105.5 Gy
- e) 150 Gy

Assuming an $\frac{\alpha}{\beta} = 10$ Gy , which prescription scheme have LQ BED <100 Gy?

a) 50 Gy in 5 fractions

- b) 40 Gy in 4 fractions
- c) 48 Gy in 4 fractions
- d) 42 Gy in 3 fractions
- e) 34 Gy in 1 fraction

Assuming an $\frac{\alpha}{\beta} = 10$ Gy , which prescription scheme have LQ BED <100 Gy?

- a) 50 Gy in 5 fractions
- b) 40 Gy in 4 fractions
- c) 48 Gy in 4 fractions
- d) 42 Gy in 3 fractions
- e) 34 Gy in 1 fraction

Ref: Fowler JF. 21 years of biologically effective dose. Br J Radiol. 2010 Jul;83(991):554-68.

$$BED_{LQ} = 4*10\left(1 + \frac{10}{10}\right) = 40*2 = 80Gy$$

THE OTHER ANSWERS

- 50 Gy in 5 fractions = 50(1+10/10)=50(1+1)=100 Gy
- 40 Gy in 4 fractions = 40 (1+10/10)=40(1+1)=80 Gy
- 48 Gy in 4 fractions = 48 (1+12/10)=48 (1+1.2)=105.6 Gy
- 42 Gy in 3 fractions = 42 (1+14/10)=42 (1+1.4)=100.8 Gy
- 34 Gy in 1 fraction = 34 (1+34/10)=34(1+3.4)=149.6 Gy

Int. J. Radiation Oncology Biol. Phys., Vol. 74, No. 1, pp. 47–54, 2009 Copyright © 2009 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/09/\$-see front matter

NSCLC

doi:10.1016/j.ijrobp.2008.06.1939

CLINICAL INVESTIGATION

Lung

DOSE-RESPONSE RELATIONSHIP FOR IMAGE-GUIDED STEREOTACTIC BODY RADIOTHERAPY OF PULMONARY TUMORS: RELEVANCE OF 4D DOSE CALCULATION

MATTHIAS GUCKENBERGER, M.D.,* JOERN WULF, M.D.,*[†] GERD MUELLER, M.D.,* THOMAS KRIEGER, M.SC.,* KURT BAIER, M.SC.,* MANUELA GABOR, M.S.,* ANNE RICHTER, M.SC.,* JUERGEN WILBERT, PH.D.,* AND MICHAEL FLENTJE, M.D.*

The 3-ys local control rates were 89% and 62% for >100 Gy and <100 Gy BED (p = 0.0001)

effects. The EQD₂ was adjusted for overall treatment time (EQD_{2,T}) to take into account accelerated repopulation after 21 days [27], but knowing that these estimations may be less appropriate with fraction sizes over 10 Gy [28].

$$EQD_{2,T} = D \cdot \frac{d + \alpha/\beta}{2 + \alpha/\beta} - MAX(0, T - T_{ref}) \cdot D_{prolif}$$

where the second term is zero for $T \leq T_{ref}$ and equal to D_{prolif} ($D_{prolif} = 0.6$) multiplied by the number of days beyond T_{ref} for $T > T_{ref}$. To compare SBRT with accelerated high-dose conformal

NSCLC

260 Brown et al.

International Journal of Radiation Oncology • Biology • Physics

Fig. 8. Tumor control probability (TCP) as a function of biologically effective dose (BED) for stage I non-small cell lung cancer. Left, symbols show local control rates (≥ 2 years) from a pooled analysis reported by Mehta et al (27) with symbols distinguishing conventional and stereotactic body radiation therapy (SBRT) fractionations. Right, weighted mean TCP probabilities calculated to compensate for the different numbers of patients in each study. Solid lines show linear quadratic-based fits to the data showing that within the limits of clinical data, the efficacy of single doses, a few SBRT fractions, and conventional radiation therapy produce the same overall TCP for the same BED. From (58) with permission. 3D-CRT = 3-dimensional conformal radiation therapy.

SBRT

Dose heterogeneity within the PTV is desired!

- Higher central dose to GTV because
 > hypoxic fraction.
- Optimally, the GTV will receive ~10% greater dose than the outside edges of the PTV.
- Sharp **dose gradient** outside the tumor is desired.
- Requires effective patient immobilization.
- Requires use of multiple noncoplanar static fields or dynamic arcs.

TYPE OF HYPOXIC CELLS

- chronic hypoxia results from the limited diffusion distance of oxygen through tissue, i.e. some cells may remain hypoxic for a long period of time;
- acute hypoxia is a result of the temporary closing of tumor blood vessels and is therefore transient.

ACUTE HYPOXIA

- Tumor blood vessels open and close in a random fashion so that different regions of the tumor become hypoxic *intermittently*.
- When a dose of radiation is delivered a proportion of the tumor cells may be hypoxic but at the next dose of radiation a different group of cells may be hypoxic.
- When many doses of radiation are delivered the acute hypoxia is of no further importance.

- This reoxygenation, taking place over a period of 1-2 days as the tumor shrinks, involves reoxygenation of cells that were chronically hypoxic.
- We assumed that the cells able to reoxygenate before the next dose fraction will be indicated by "B" varying in accordance with dose fraction.

Ling H et al. IJROBP 2000, 46:935-946

The decrease in cell density depends on dose fraction and α , β LQ model parameters

- When a tumor contains a sizeable fraction of hypoxic cells, its response to a course of fractionated radiation will be determined by several factors:
 - The fraction of hypoxic cells $\rightarrow \eta$
 - the Oxygen Enhancement Ratio \rightarrow **OER**;
 - the extent of Reoxygenation \rightarrow **B**;
 - and dose per fraction \rightarrow **d**.

• The surviving fractions after *one* irradiation with a dose *d*, are given by:

$$S_0(d) = \exp\left[-d(\alpha_0 + \beta_0 d)\right]$$
$$S_h(d) = \exp\left[-d(\alpha_h + \beta_h d)\right]$$

• for oxic (0) and hypoxic (h) clonogens, respectively,

where:

$$\begin{cases}
\alpha_{h} = \frac{\alpha_{0}}{OER_{\alpha}}; & OER_{\alpha} = 1.7 \\
\beta_{h} = \frac{\beta_{0}}{OER_{\beta}^{2}}; & OER_{\beta} = 3.25
\end{cases}$$
• based on the modified Linear Quadratic (LQ) model for Tumor Control Probability from the Ruggeri and Nahum approach,

the *TCP* can be written:

$$TCP = \frac{1}{\sqrt{2\pi}\sigma_{\overline{\mathrm{h}(N)}}} \int_{0}^{\infty} \exp\left[-\left(\frac{\ln(N) - \overline{\ln(N)}}{\sqrt{2} \cdot \sigma_{\overline{\mathrm{h}(N)}}}\right)^{2}\right] \exp\left[-N\left(P_{o} + P_{h}\right)\right] \cdot d\ln(N)$$

• where N is the number of tumour clonogens and $P_o and P_h$ are the surviving fractions for *oxic and hypoxic* clonogens, respectively;

 $\ln(N)$ is the mean of number of tumour clonogens characterized by a standard deviation $\sigma_{\overline{\ln(N)}}$

Ruggeri and Nahum M.Phys. 2006; 33:4044-4055

• The P_i can be written as follows:

$$P_{o} = (1 - \eta) \cdot S_{0}^{n}(d)$$

$$P_{h} = \eta (1 - B)^{n-1} \cdot S_{h}^{n}(d) + \eta \cdot B \left\{ \sum_{k=1}^{n-1} (1 - B)^{n-1-k} S_{h}^{n-k}(d) \cdot S_{0}^{k}(d) \right\}$$

where:

- **o** η is the *hypoxic fraction*
- the *k*-th term in the summation takes into account that fraction of the *h*-clonogens which undergoes *reoxygenation* after (*n*-*k*) irradiations only, thus undergoing the remaining *k* fractions in a well-oxygenated state

VARYING HYPOXIC FRACTION IN A TUMOR

No	10 ⁹	cells	
HF	variable		
Teff	300	days	
ΔT	1.4	days	
в	0.01		
αο	0.21	Gy-1	
β <mark>ο</mark>	0.14	Gy-2	
αh	0.12	Gy-1	
βh	0.013	Gy-2	

Seminars in RADIATION ONCOLOGY

The Linear-Quadratic Model Is an Appropriate Methodology for Determining Isoeffective Doses at Large Doses Per Fraction

David J. Brenner, PhD, DSc

The tool most commonly used for quantitative predictions of dose/fractionation dependencies in radiotherapy is the mechanistically based linear-quadratic (LQ) model. The LQ formalism is now almost universally used for calculating radiotherapeutic isoeffect doses for different fractionation/protraction schemes. In summary, the LQ model has the following useful properties for predicting isoeffect doses: (1) it is a mechanistic, biologically based model; (2) it has sufficiently few parameters to be practical; (3) most other mechanistic models of cell killing predict the same fractionation dependencies as does the LQ model; (4) it has well-documented predictive properties for fractionation/dose-rate effects in the laboratory; and (5) it is reasonably well validated, experimentally and theoretically, up to about 10 Gy/fraction and would be reasonable for use up to about 18 Gy per fraction. To date, there is no evidence of problems when the LQ model has been applied in the clinic. Semin Radiat Oncol 18:234-239 © 2008 Elsevier Inc. All rights reserved.

The Tumor Radiobiology of SRS and SBRT: Are More Than the 5 Rs Involved?

J. Martin Brown, PhD,* David J. Carlson, PhD,[†] and David J. Brenner, PhD[‡]

*Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; [†]Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, and [‡]Center for Radiological Research, Columbia University Medical Center, New York, New York

Received May 9, 2013, and in revised form Jul 14, 2013. Accepted for publication Jul 17, 2013

Int J Radiation Oncol Biol Phys, Vol. 88, No. 2, pp. 254-262, 2014

".....we conclude that the available preclinical and clinical data <u>do not support</u> a need to change the LQ model"

POINT/COUNTERPOINT

Suggestions for topics suitable for these Point/Counterpoint debates should be addressed to Colin G. Orton, Professor Emeritus, Wayne State University, Detroit: ortonc@comcast.net. Persons participating in Point/Counterpoint discussions are selected for their knowledge and communicative skill. Their positions for or against a proposition may or may not reflect their personal opinions or the positions of their employers.

The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery

John P. Kirkpatrick, M.D., Ph.D. Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (Tel: 919-668-7342, E-mail: kirkp001@mc.duke.edu)

David J. Brenner, Ph.D., D.Sc. Center for Radiological Research, Columb (Tel: 212-305-9930, E-mail: djb3@columb Colin G. Orton, Ph.D., Moderator (Received 27 May 2009; accepted for

[DOI: 10.1118/1.3157095]

High-dose linear component could be achieved by assuming a higher α/β rationale for higher α/β in rapidly proliferating & hypoxic tumors

LO poor

Fowler J F 2008 Linear quadratics is alive and well: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847-852) *Int J Radiat Oncol Biol Phys.* **72** 957

Astrahan, Med. Phys. 2008

$$D_T = 2\alpha / \beta$$
$$\gamma = tg(\underline{a} D_T)$$

On the log-linear plot, the LQ curve closely fits these experimental results for Chinese hamster **cells** in culture up to a dose of 6 Gy, but then continues to bend.

The experimental results are observed to become linear at high dose.

MODELS

Note: abbreviations: d = dose/fraction; #pat. = number of patients; #fr = number of fractions; p.i. = prescription isodose; Δt = time between fractions; LC3 = local control at 3 yr. In the studies marked with 'a' multiple doses per fraction and fraction numbers were used, patient group-averaged values have therefore been calculated and listed in the table. 'b' indicates the validation set.

2010

2010

2010

2011

2011

37

193

62

101

55

4

4.85

3

4

3

13

12.37

15

12

18

100

80

80

100

90

2.5

1

2

3

2.5

74

89

87.8

86.8

97.6

Baba et al.^b

Ricardi et al.b

Matsuo et al.^b

Haasbeek et al.a,b

Timmermann et al.^b

B = f(d, n)

	Parameter	LQM		LQLM	
η_h		OER set 1	OER set 2	OER set 1	OER set 2
0.05	L	-588.1	-582.4	-589.8	-582.6
	AIC	-6.8	-6.7	-6.8	-6.7
0.10	L	-557.7	-554.9	-558.6	-554.8
	AIC	-6.6	-6.6	-6.7	-6.6
0.15	L	-545.6 (*)	-546.6(*)	-546.0(*)	-546.3(*)
	AIC	-6.6 (*)	-6.6(*)	-6.6(*)	-6.6(*)
0.50	L	-575.1	-600.8	-564.4	-596.4
	AIC	-6.7	-6.8	-6.7	-6.8
0.00	L	-1038.2		-1038.2	
	AIC	-12.9		-12.9	

Note: abbreviation: L = log-likelihood; AIC = Akaike information criterion see text; (*) indicates the maximum of the L or AIC values against the fraction of hypoxic cells.

UNIVERSAL SURVIVAL CURVE PARK ET AL. 2008

Combine the LQ model with the multi-target model at high dose

The steepness of the curves differs considerably for d> 6 Gy USC predicts greater sparing OARs outside PTV than LQ

LQ MODEL TENDS TO OVERESTIMATE THE EFFECTIVENESS OF CELL KILLING BY A SINGLE HIGH DOSE

The essential problem stems from ignoring the reduction of sublethal damage after conversion to lethal damage; therefore the pool size of the sublethals lesions which are available to be converted to lethal lesions with further irradiation is overestimated (*Wang JZ et al. Sci Transl Med. 2010*)

Analysis of tumor control data from 2965 patients

Best fits to data on earlystage NSCLC from the LQ model with heterogeneous radiosensitivity (LQ), and from the LQL, PLQ and USC models with homogeneous radiosensitivity.

LQ model with heterogeneous radiosensitivity provides a much better description of the SBRT TCP data as compared with the models which include an extra high-dose mechanism.

Shuryaka et al. 2015

RADIOBIOLOGY: NORMAL TISSUES

- Sparing of normal tissues is essential for good therapeutic outcome
- The radiobiology of normal tissues may be even more complex than tumours:
 - different organs respond differently
 - there is a response of a cell organization not just of a single cell
 - repair of damage is, in general more important

VOLUME EFFECTS

- <u>The more normal tissue</u> is irradiated in parallel organs
 - the greater the pain for the patient
 - the more chance that a whole organ fails
- Rule of thumb the greater the volume the smaller the dose should be
- In serial organs even a small volume irradiated beyond a threshold can lead to whole organ failure (*e.g.* spinal cord)

• Figure 1 4DCT images of an early-stage lung cancer patient at end-inhalation (A); end exhalation (B); and contours from all 10 phases of the 4DCT combined (C). Abbreviation: 4DCT, four-dimensional computed tomography.

MODELING NTCP

Mathematical models are useful to simulate the reality of experimental data and predict the behavior of an effect where data points are not readily available.

There are two different philosophies:

- an empirical approach
 - the emphasis is on being able to describe the data using <u>simple</u> mathematical functions
- a mechanistic approach
 - the emphasis is on being **able to describe the** <u>underlying</u> mechanisms

Ideally the best model should satisfy both goals

The Linear-Quadratic Model Is an Appropriate Methodology for Determining Isoeffective Doses at Large Doses Per Fraction

Brenner DJ, Semin Rad Onc 2008;18:234-239

The Linear-Quadratic Model Is an Appropriate Methodology for Determining Isoeffective Doses at Large Doses Per Fraction

In summary, LQ has the following useful properties for predicting isoeffect doses:

- 1. It is a mechanistic, biologically based model.
- 2. It has sufficiently few parameters to be practical.
- 3. Most other mechanistic models of cell killing predict the same fractionation dependencies as does LQ.
- It has well-documented predictive properties for fractionation/dose-rate effects in the laboratory.
- 5. It is reasonably well validated, experimentally and theoretically, up to about 10 Gy/fraction and would be reasonable for use up to about 18 Gy per fraction.
- To date, there is no evidence of problems when LQ has been applied in the clinic.

From 10 to 18 Gy/fr.

Changes in lung density in the peri-tumoral region (right) showed strong correlation with radiological pneumonitis.

Palma DA et al. 2011

VOLUME 24 · NUMBER 30 · OCTOBER 20 2006

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Excessive Toxicity When Treating Central Tumors in a Phase II Study of Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Lung Cancer Robert Timmerman, Ronald McGarry, Constantin Yiannoutsos, Lech Papiez, Kathy Tudor, Jill DeLuca,

Kovert Timmerman, Ronaia McGarry, Constantin Tiannoutsos, Lech Papiez, Ratny Tudor, Jul DeLuc Marvene Ewing, Ramzi Abdulrahman, Colleen DesRosiers, Mark Williams, and James Fletcher

- · IU 70 patient phase II study
- 20 Gy X 3 for T1
 22 Gy X 3 for T2
- NO restriction on tumor location

Zone of the Proximal Bronchial Tree

Fig 4. Kaplan-Meier plot of time from treatment until grade 3 to 5 treatment related toxicity comparing patients with tumors in the central (perihilar and central mediastinal) regions from those with more peripheral tumors.

VOLUME 24 · NUMBER 30 · OCTOBER 20 2006

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Excessive Toxicity When Treating Central Tumors in a Phase II Study of Stereotactic Body Radiation Therapy for Medically Inoperable Early-Stage Lung Cancer

Robert Timmerman, Ronald McGarry, Constantin Yiannoutsos, Lech Papiez, Kathy Tudor, Jill DeLuca, Marvene Ewing, Ramzi Abdulrahman, Colleen DesRosiers, Mark Williams, and James Fletcher

- · IU 70 patient phase II study
- 20 Gy X 3 for T1
 22 Gy X 3 for T2
- NO restriction on tumor location

Zone of the Proximal Bronchial Tree

Fig 4. Kaplan-Meier plot of time from treatment until grade 3 to 5 treatment related toxicity comparing patients with tumors in the central (perihilar and central mediastinal) regions from those with more peripheral tumors. "Zone of the proximal bronchial tree" (figure) Target dose homogeneity limits

Dose "isotropicity" limitation requiring falloff of approx 50% within 2 cm of PTV V20 < 10% Spinal cord, heart, esophagus, etc. limits

Illustration of selection criteria of fractionation scheme in the current study. SBRT, stereotactic body radiation therapy.

- Patients' characteristics
- Failure patterns and clinical outcomes
- Prognostic factors by uni- and multi-variate analysis
- Radiation therapy related morbidities

CANCER RESEARCH AND TREATMENT

COMPLICATIONS FROM SBRT FOR LUNG CANCER

Figure 1. Diagrams of the proximal bronchial tree and the surrounding 2 cm avoidance zone. Upper left: Axial view; Lower left: Coronal view; Upper right: 3-dimensional representation of the avoidance zone; Lower right: Sagittal view.

Red Shell: High-risk Zone

trachea in blue.

Kang et al. 2015

Yang et al. 2010

PLAN REVIEW

Example of Potential Toxicity: - LOCATION

- Target is adjacent to chest wall and ribs.
- Target is lies in almost the same coronal plane as the spinal cord

Example of Conformal Isodose plan meeting all published index guidelines. 50% isodose volume is not protruding through the PTV+2cm volume.

DETERMINING MATCHING PRIORITIES *Target volume vs Surrogate*

FROM ABSORBED DOSE TO BIOLOGICALLY EFFECTIVE DOSE

From absorbed dose to biologically effective dose

BED gradient

Gy (Max)

Please verify the prescription dos...

60.01

BED gradient

Voxel-Level BED **Corrected Dosimetric** and Radiobiological Assessment of 2 Kinds of Hybrid Radiotherapy **Planning Methods for** Stage III NSCLC

Wang, et al. 2022

Figure 3. BED isodose lines of one patient's C & S plan were shown in axial (a) and coronal view (c). For comparison, BED isodose lines of the corresponding C & SIB plan were shown in axial view (b) and sagittal view (d). The absolute BED values were given in the legend as: 13 000 cGy (brown), 6800 cGy (yellow), 6000 cGy (green), 4500 cGy (dark green), 2000 cGy (blue), and 500 cGy (dark blue). α/β values: target 10, lung 3, spinal cord 2, esophagus 10, and heart 3.

Abbreviations: BED, biological equivalent dose; CFRT, conventional fraction radiotherapy; SBRT, stereotactic body radiotherapy; SIB, simultaneous integrated boost; C & S, CFRT and SBRT; C & SIB, CFRT and SIB.

Bold values in Table 2 indicate that the groups of data have statistical difference.

IN PRACTICE ...

NORMAL TISSUES DOSE TOLERANCE IN SBRT

Hypofractionation Tissue Effects in Clinic (HyTEC)

Number 2

Cont Editor

Jimm Grimm, PhD

OTHER PROPOSED MODELS FOR SBRT

Tumour responses to radiotherapy

RADIATION RESEARCH **177**, 311–327 (2012) 0033-7587/12 \$15.00 ©2012 by Radiation Research Society. All rights of reproduction in any form reserved. DOI: 10.1667/RR2773.1

REVIEW

Radiation-Induced Vascular Damage in Tumors: Implications of Vascular Damage in Ablative Hypofractionated Radiotherapy (SBRT and SRS)

Heon Joo Park,^{a,b} Robert J. Griffin,^c Susanta Hui,^a Seymour H. Levitt^{a,d} and Chang W. Song^{a,1}

- For D < 5Gy oxic cells die
- For D > 5Gy hypoxic cells death dominates
- For D >10 Gy Vascular damage at high doses produces secondary cell killing, suggests that radiation doses induce vascular damage leading to indirect tumor cell death.
- For D >17 Gy indirect radiation effect due to the vascular damage

FIG. 7. Hypothetical cell death mechanism in the tumors by an exposure to various doses of ionizing radiation in a single dose assuming 10% of clonogenic cells in the tumors are radiobiologically hypoxic. The initial part of the radiation survival curve a shows the death of fully oxygenated cells. With the increase in radiation dose to higher than about 5 Gy, death of hypoxic cells dominates the cell death, as indicated by curve b. As the radiation dose is increased further to about to 12 Gy, vascular damage begins to occur in the tumors in which endothelial cells are relatively radiosensitive, thereby causing indirect tumor cell death, as shown by curve c. In the tumors in which endothelial cells are radioresistant, indirect cell death due to vascular damage begins when the radiation dose is increased to about 17 Gy, as indicated by curve d (12).

• Dose rate \rightarrow 24 Gy/min

Ref.	Cells	E (MV)	Dose rate (Gy/min)	Modulated beam	Effect
Sørensen et al. RO 2011	HN FaDu V79	6FFF 6X	5, 10, 30	No	No
Loshe <i>et al</i> .RO 2011	Gliomas T98G (mut-p53) U87MG	10FFF 10X	0.02, 4, 24	No	Yes at D≥10 Gy
King <i>et al</i> .PMB 2013	PCa DU 145, NSCLC H460	6FFF 6X	3, 11	Yes (bolus)	No
<i>Verbakel et al. AO</i> 2013	Lung SW1573 ; gliom T98 (Mut-p53); astroc D348	6/10 FFF/X	4, 8	Yes (IMRT)	No
Karan <i>et al.</i> PMB 2013	cervix SiHa; NSCLC H460; V79	6/10 FFF/X	3, 10	No	No
Bewes et al. 2008	melanoma MM576; NSCLC H460	6FFF 6X	1.2, 5	Yes	Dose rate effect on protracted delivery

THE ONCOLOGIST'S PROSPECTIVE

Most reports on abscopal effects refer to antitumor consequences outside the radiation field

Multiple mechanisms have been proposed to cause the abscopal effects, such as:

- the systemic secretion of specific cytokines and chemokines,
- a systemic immune response against local tumor antigens released
- local inflammation that can lead to a distant effect.

In any case, the hypothesis that the abscopal effect is immune-mediated is becoming stronger Distal areas to the primary tumor (metastasis)

ANIMAL MODEL

Only fractionated, and not RT administered as a single high dose, induced an immune-mediated abscopal effect in a secondary tumor when combined with anti-CTLA-4 antibody.

ANIMAL MODEL

The abscopal effect is dose dependent and not tumor-specific

Camphausen et al., 2011

When tumours reached a volume of 0.2 cm³, irradiation was performed, under strict dose monitoring, with a dedicated mobile accelerator designed for intra-Operative-RT (IORT). A dose of 10 or 20 Gy delivered by a 10 MeV electron beam, was delivered to a tumour established in one side flank (IR groups), leaving the other non-irradiated (NIR groups).

Our results suggest that the interplay between radiation dose and p53 status plays a critical role in the RT-induced bystander effects

Strigari et al., 2014

HIGH DOSE RADIATION SURDOUTSE BRADIATION SEEMENT BYSTANDER TUMOR VOLUME HYPOVASCULARIZED, HYPOMETABOLIC SEGMENT NECROTIC SEGMENT **NON-TARGETED REMAINDER** (VASCULARIZED, HYPERMETABOLIC) TUMOR RECEIVING BYSTANDER SIGNALS

NEOADJUVANT SBRT-PATHY: **a-c**) diagnostic CT of the patient with unresectable squamous-cell lung cancer (yellow arrows), separate lung lesion (blue arrow), and an atelectasis (red arrow). 3 weeks after SBRT-PATHY, preoperative restaging CT (**d-f**) showed a 60% reduction of partially treated tumor (bystander effect: yellow arrows), a 50% reduction of unirradiated lung lesion (abscopal effect: blue arrows), and complete regression of atelectasis (red arrows)

Novel stereotactic body radiation therapy (SBRT)-based partial tumor irradiation targeting hypoxic segment of bulky tumors (SBRT-PATHY): improvement of the radiotherapy outcome by exploiting the bystander and abscopal effects

MULTIFACTORIALITY IN DETERMINING CLINICAL MANIFESTATION OF ABSCOPAL EFFECT

FROM THE RADIOBIOLOGICAL POINT OF VIEW

- SBRT seems to be capable of overcoming hypoxic radioprotection through mechanisms other than directly killing tumor cells via DNA damage.
- Important mechanisms for cell inactivation has been hypothesized to become important at doses >10 Gy
 - Vascular effects occurs increasingly at higher doses per fraction
 - Immunological effect
 - Bystander effect

FUTURE DIRECTIONS

- Functional Liver, Functional Lung Based Planning
- MR based Planning
 - For more precise targeting and improved assessment of motion/tumor margins
- Analysis of Plan Robustness
 - To measure and quantify the uncertainty of the setup
- Reproducibility of Setup, Management of Motion, IGRT Methods
- Defining Normal Structures and dose Limits
- FLASH (?)

lidia.strigari@aosp.bo.it

SPARE

LQ MODEL

$$S_{LQ} = e^{-\alpha d - \beta d}$$

LQ model heterogeneity in tumor cell radiosensitivity

$$S_{LQ,hetero} = \frac{\left(\alpha BED + g + 1\right)^{g+1}}{\left(g + 1\right)^{g+1}}$$

g≥2

LOL model
$$S_{LQL} = e^{-\alpha d + 2\beta \frac{\left(p_1 d - 1 + e^{-p_1 d}\right)}{p_1^2}}$$

$$S_{USC} = e^{-(\alpha d + \rho d^{2})} \quad \text{for} \quad d \le \frac{\alpha}{\beta} \frac{(1 + \alpha p_{1})}{2\alpha p_{1}}$$
$$S_{USC} = e^{-\left(\frac{d}{p_{1}} - \frac{\alpha(1 + \alpha p_{1})^{2}}{\beta - 4\alpha p_{1}^{2}} + \beta d^{2}\right)} \quad \text{for} \quad d > \frac{\alpha}{\beta} \frac{(1 + \alpha p_{1})}{2\alpha p_{1}}$$

Padé linear quadratic (PLQ) model $S_{PLQ} = \exp\left[-\frac{\alpha d + \beta d^2}{1 + p_1 d}\right]$

the dose response shape is gradually altered, becoming less curved at high doses, by the presence of a term $[1 + p_1d]$ in the denominator of the function

SIMPLIFIED PTV MARGIN RECIPE FOR DOSE PROBABILITY

• To cover the CTV of the 90% of patients with 95% of isodose (analytical solution) :

PTV margin = $2.5 \Sigma + 0.7 \sigma$

- Σ = quadratic sum of SD of all the preparation (systematic) errors
- σ = quadratic sum of SD of all the execution (random) errors

For a big CTV with smooth shape and penumbra 5mm

(van Herk et al. IJROBP 2000)

PTV MARGINS IN SBRT

- Smaller number of fractions has an impact on the model
- "Random errors" become systematic errors in the limit of 1-5 fractions

Daily image guidance allows the planning target volume (**PTV**) to be reduced, but uncertainties (in processes such as image registration and corrections) still be taken into account

FIGURE 20.1 Three-year overall survival rate as a function of biologically effective dose (BED) for primary liver tumors. BED and the curve were calculated using the model described by Tai, A., et al. (2008). Note that in the studies by Wu, D. H., et al. (2004), Liu et al. (2004), and Zeng, Z. C., et al. (2004) the follow-up time was recorded from the beginning of diagnosis, whereas in other studies it was recorded from the start of treatment.

Normal tissue complication probability (NTCP) data plotted as a function of normalized total dose (NTD) from he CC) patients of Child-Pugh A (left panel) and Child-Pugh B (right panel). NTD was calculated by $\left(\frac{\alpha/\beta+d+f\times N}{\alpha/\beta+d_{ref}+f\times N_{ref}}\right)D(d)$, w ctions and f is a fitting parameter (0.156 and 0 for Child-Pugh A and B, respectively; Tai 2009). The subscript refers to 1 scheme at which the Lyman model parameters were derived. (Adapted from Tai, A., B. Erickson, and X. A. Li. 2009. Int J 1 83–9. With permission.)

Original Article

Is Biochemical Relapse-free Survival After Profoundly Hypofractionated Radiotherapy Consistent with Current Radiobiological Models?

A.C. Tree *, V.S. Khoo *†, N.J. van As *, M. Partridge †¹

 * Royal Marsden NHS Foundation Trust, London, UK † Institute of Cancer Research, London, UK

Received 8 October 2013; received in revised form 19 December 2013; accepted 2 January 2014

Fig 1. Biochemical relapse-free survival against EQD₂ for low-, intermediate- and high-risk patients and for mixed-risk groups (a, b, c and d, respectively). Data points show the result of trials of standard and moderate hypofractionation (\bullet) and profound hypofractionation (\circ). Solid lines show published model fits, with the exception of the Miralbell model for mixed-risk group data, which is fitted to the data in (d). Dotted lines show 95% confidence intervals for the Miralbell fit.

Recommendations, thorax and abdomen region

	Absorbed dose recommendations	EQD2/BED/NTCP recommendations	Prob.curve
Heart/cardiac mort Heart/pericarditis.	Yes, new data needed	NTCP α/β=3Gy	RS LKB
Lung /RP	Yes, new data keep coming	MLD, EQD2 (SBRT open)	Function of MD + clin/risk factors + genetic
Esophagus/acute	Yes, but limited evidence	Mean dose	
Ribs/fracture	Yes,but few data	LQ	Logistic - D _{2cm3} V ₃₀
Chest wall/pain	Yes, but few data		
Liver/RILD	Yes	Primary,and metastatic EQD2 $\alpha/\beta=2Gy$ (SBRT open)	Function of MD + clin/risk factors
Spine/myelitis	Yes, but few data	EQD2 α/β=3Gy	Function of EQD2