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Historical background

e Alan Turing (London, 1912 — Manchester, 1954)
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Historical background
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Tape is infinite in both directions.
Only finitely many nonblank cells atany time.

Turing machine
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MIND
A QUARTERLY REVIEW
OF -

PSYCHOLOGY AND PHILOSOPHY

IL—-COMPUTING MACHINERY AND
' INTELLIGENCE

By A.M. Turixa

1. The Imitation Game.

I proPosE to consider the question, ‘ Can machines think 7’
This should begin with definitions of the meaning of the terms
‘ machine ’ and ‘ think ’. The definitions might be framed so as to
reflect so far as possible the normal use of the words, but this
attitude is dangerous. If the meaning of the words ‘ machine’
and ‘ think ’ are to be found by examinihg how they are commonly
used it is difficult to escape the conclusion that the meaning
and the answer to the question, ‘ Can machines think %’ is to be
sought in a statistical survey such as a Gallup poll. But this is
absurd. Instead of attempting such a definition I shall replace the
question by another, which is closely related to it and is expressed
in relatively unambiguous words.

The new form of the problem can be described in terms of
a game which we call the ‘imitation game’, It is played with
three people, a man (A), a woman (B), and an interrogator (C) who
may be of either sex. The interrogator stays in a room apart
from the other two. The object of the game for the interrogator
i8 to determine which of the other two is the man and which is
the woman. He knows them by labels X and Y, and at the end
of the game he says either ‘X is Aand Yis B’or ‘XisBand Y
is A’. The interrogator is allowed to put questions to A and B
thus : :
C': Will X please tell me the length of his or her hair ?
Now suppose X is actually A, then A must answer. It is A’s
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Historical background

* UAl was born at the conference at Dartmouth College
(Hanover, NH, USA) in 1956 where the the term “artificial
intelligence” was coined

Dartmouth Summer Research Project on Artificial Intelllgence 1956




Artificial Intelligence

* Artificial Intelligence (Al) is a group of technologies aiming at giving to
machines abilities requiring human intelligence

deep learning

st eieed machine learning
2 (ML)
unsupervised

content extraction

classification

natural language
processing (NLP)
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machine translation

question answering

text generation

Artificial Intelligence
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expert systems
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Machine Learning

Machine learning (ML) is the discipline which aims at giving machines the ability to
learn to perform tasks, without being explicitly programmed to conduct these tasks
(Arthur Samuel 1959)




Supervised Machine learning

* The ML algorithm is trained in a known dataset in order to yield a
model which can make predictions on an unknown dataset

Training Data

Training Phase

ML Algorithm

——————————————

1

1

: Test data Prediction Test Phase
1

1



Classification

* Dataset of iris flowers (by Roland Fisher,

Iris setosa Iris versicolor

Sepalo

Petalo



Decision Trees

decision tree

PL>2.45

/ nodes

PL>4.75

PL>5.05

PL<5.05

Iris virginica

Petal Length {cm)
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https://victorzhou.com/blog/gini-impurity/



Metrics for performance

... TP
N B Se?’lSItIUIty = TP + FN
TN
_ N TN FP specificity = w5
-}
g P FN TP TP+TN

aCCuracy=
y TP+FP+TN+FN

* A highly sensitive test is preferable for screening, as it gives less false
negatives

* A highly specific test gives less false positives, so it is useful to confirm
a pathology



Curva Receliver Operating Characteristic (ROC)

e Consider a classifiers that, instead of a binary output, provides the
probability of being positive

* ROC curve shows true positives vs false positives for different
thresholds of the continuous index

. ROC CURVE
m -
] V0= FPERFECT CLASSIFIER [ {«&"’-5',/
> ~d
[
wn o=
[®) Ly
o &
) o
S S 06
o sctual =
ot g:_ t
i g True False 3
..? = True O 0 & ol =
E o False 20 30 2
= iy
c
Q
wn i
elell F
0. 9| ] i 1 T 1 1
0.0 0.2 o4 0.6 [oX - .o

s = FALSE POSITIVE RATE

1-specificity=false positives



Statistics vs machine learning

Statistics Machine learning

Hypothesis of

: Analysis
correlation

Hypothesis of

correlation
Machine learning algorithms analyze a dataset and then extract correlations,

Analyisis

a reversal of traditional data analysis, where the hypothesis is chosen first
and then the data queried to test the hypothesis.

® For the same reason, ML needs large datasets to learn, rather than just a
statistically relevant sample.




Neural networks

Mccullough e Pitts (1943) describe the

j}jﬁ‘ brain using an abstract model of
4@_ j@» neural network

Harold Hebb (1949): “Cells that fire
together wire together”



Neural networks

* Perceptron by Frank Rosenblatt (1959)

Inputs

Neuron —

Output

Activation

‘v v by FRANK ROSENBLATT / /7
.:‘-“h_ : :'l/"':,

Introducing the perceptron — A machine which senses,
recognizes, remembers, and responds like the human mind.




Cathegories of machine learning

vector

machines
Decisio
n trees Neural networks
Learning

Physica Medica Volume 83, March 2021, Pages 221-241



Al applied to imaging

* Lodwick, 1963

Bayesian Bone Tumor Diagnosis

Michael L. Richardson, MLD,
University of Washington Department of Radiology

nck in Radiol Clin N Am 1965:3:487-497 and in Radiology 1963,80:273-275,
wental in nature, and was designed to be used as a teaching aid for the education of medical students and radiology residents, It should NOT be used for diagnoesis or treatment planning in actual patients.
Please input the following information about your bone tumor
What is the patient's ng\t’.’[—]

What is the maximum diameter of the umor inem? |

[ Calculate differential diagnosis |




Radiomic variables or “features”

Shape
| LA
compactness 2 = 36?TF
Texture

cluster shade =" (i+j—2u) *P(i, j)

coarseness =

1
g+ P(i)s(i)

Avanzo et al. Phys Med 38 (2017) 122-139

Histogram
|ilzi:(xa)—i)“

kurtosis =

(;Z(X(i)—i)zf

entropy = Z( P(i)log, P(i))




iables or “features”
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Example

* Analizzare e capire le variabili selezionate e perche

|

EGF +

Baseline (Fig
1-a) 7766.5 1.522 0.145 5337.9 419770.4 475.2 1369.6

»
| cT Gabor_E - | Gabor_E - | L E L E
”. Volume Radius_Std Shape_SI6 a .or_ nergy a <')r_ nergy aws_Energy aws_Ene
acquisition dirl35-w3 dir45-w9 -10 rgy-13

EGFR
Followup (1-

positive b) 7195.8 1.657 0.151 4043.5 327365.1 512.0 1352.9
Change -570.6 0.135 0.006 -1294.4 -92405.3 36.8 -16.6

Baseline (Fig
1-0) 3502.4 1.422 0.173 11601.7 419578.9 367.7 353.9

-c

Wild type Followup (1-

d) 4522.8 1.251 0.165 10605.5 361191.5 326.3 349.3
Change 1020.4 -0.171 -0.009 -996.2 -58387.4 -41.5 -4.5

Wildtype

Aerts et al. Sci Rep 6 (2016) 33860



Radiomic profile

Sfericita Densita Disomogeneita

Biomarkers

Radiomic profile

Prognosis



ML In radiomics

- High number of often redundant variables:
29 shape + (174-shape=145) * (filters LoG,

wavelet...) * (imaging modalities: PET, CT, MRI) Shape

- Complex, non-linear dependencies on outcome

Histogram (15t Order)

. °-‘ ot Textural (2" order)

Neural
Network

Decision
trees




Il. Contouring lll. Pre- Processing, filtering IV. Features

I. Image acquisition
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Textural
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a

Characterization of lesion

* Molecular subtype of breast cancer

* stepwise feature selection and linear discriminant analysis

b

ER Positive Case (a)

ER Negative Case (b)

Cancer Subtype Luminal A HER2-enriched
MRI CEIP Size
(Effective Diameter) 12.9 mm 23.8 mm
Range [7.8 54.0]
MRI CEIP Shape
(Irregularity) 0.452 0.602

Range [0.40 0.84]

https://www.nature.com/articles/npjbcancer201612

b

Entropy

6.6

6.5

6.4

6.3

6.2

PR-

PR Status

PR+

Table 1. Results from the Mann-Whitney U-test indicating association between MRI phenotypes and molecular classifications for phenotypes shown

in Figures 2-4

Classification task Number of tumors ~ MRI phenotype Mean value (s.d.) positive versus negative  P-value  Significance level (o = 0.05)

ER+ versus ER— 91 (77 vs. 14) Effective diameter 17.6 mm (5.6) vs. 24.8 mm (10.4) 0.001? 0.0167
Irregularity 0.61 (0.11) vs. 0.65 (0.11) 0.23 0.05
Entropy 6.40 (0.11) vs. 6.45 (0.09) 0.08 0.025

PR+ versus PR— 91 (72 vs.19) Effective diameter 18.0 mm (5.6) vs. 21.6 mm (10.5) 0.14 0.025
Irregularity 0.61 (0.11) vs. 0.63 (0.10) 0.43 0.05
Entropy 6.39 (0.11) vs. 6.45 (0.07) 0.03 0.0167

HER2+ versus HER2— 91 (19 vs. 72) Effective diameter 184 mm (5.7) vs. 18.8 mm (7.3) 1.0 0.05
Irregularity 0.59 (0.12) vs. 0.62 (0.11) 0.36 0.0167
Entropy 6.41 (0.10) vs. 6.40 (0.11) 0.93 0.025

TN versus others 91 (11 vs. 80) Effective diameter 17.8 mm (5.6) vs. 25.6 (11.5) 0.006" 0.0167
Irregularity 0.60 (0.11) vs. 0.68 (0.09) 0.03 0.025
Entropy 6.40 (0.10) vs. 6.45 (0.10) 0.13 0.05

Abbreviations: ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; MRI, magnetic resonance imaging; PR, progesterone receptor;

TN, triple negative.

Indicates statistical significance was achieved after correction for multiple comparisons.




Advantages of radiomics

e Standardization

* Interpretability Shape

* Less computational resources needed

o
IBS-I i

h Ifl
image biomarker standardisation i 1r11t1at1ve il ¥ 1" ALi '
Attt

IBSI digital phantom

Histogram (15t Order)

Textural (2"9 order)




Neural networks and deep learning

* Deep learning was introduced to model outputs with more complex,
non-linear dependencies from input

Input Hidden layers

N
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https://www.pnas.org/content/116/4/1074



Convolutional networks

e Layers to extract image features through

convolution with learable filters (“kernels”) vertical

--- ] Sobel filter
B . . .
B .

8 23 4 7 7

, N R

0
0
0

v
)N R

17 5 11 8 1

Image Filter/kernel Feature

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479722/



Other layers

* Pooling layers reduce size of feature map
e.g. by calculating maximum or average in a
group of voxels

* Dropout layers zero random inputs to
prevent overfitting

* Softmax layers calculate probability of
classes
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Hidden layers

Input

Convolutional neural networks (CNN)

Classification of objects

pool,
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Chenyang Shen et al 2020 Phys. Med. Biol. 65 05TR0O1

I. Image acquisition
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Segmentation by CNN

IHOEEX2EE Down - Up KX256x256
image D convi '@l_’ D

conv3 masks
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Example: tumor detection and segmentation

 Patient data from public databases, IVO and prostate X
* Comparison against PIRADS 4+

Lesion-level ROC Curve Patient-level ROC Curve
AF1.0 AF10
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Figure 6: ROC curve of the model for significance criterion GGGZ>2, evaluated at the lesion level (left)
and the patient level (right). For comparison, triangular marks represent the radiologist-assigned pre-biopsy

PI-RADS.

Figure 8: Output of the model evaluated on three ProstateX test patients. First image from the left shows

Pe”ice r_Va Iero et aI a rXiV-21O3 12650 the GT on the T2; the rest show the output predictions of the model on different sequences (from left to
’ . .

right: T2, b800, ADC, Ktrans,



Artifact correction

CNN “Variational autoencoders”

* Encoder: neural network producing a representation of data

* Decoder: neural network trying to reconstruct the original
image from the representation of data

Try to recover the inputs

S
H1 |

ﬂz:_zl‘

01 Z Zy

92 Latent
./ variables

Guassian:
N(p, o)

Encoder decoder

Cuiet al.: ML/DL for medical physicists , Medical Physics, 2020



Generative Adversarial Network

Training

Discriminator Epoch: 1, Iteration: 1, Elapsed: 00:00:49
Images . =
3 cIassifiged as : :
real

Generated
images

Generator

Cross-modality Image registration

/\; .v
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Signal analysis

LSTM networks

Forget Update Output X;: Input
Ct—1 L g ] >N * » Ct | hg Hidden state
Ci Cell state
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Figure 6.1: A plot of the 30 minute predictions of LSTM-2 (in red) versus the target
values (in blue) for one of SP92’s test days. The grey area around the prediction
line shows the standard deviation of the output distribution.

Wang et al. DOI: 10.1109/ACCESS.2018.2869780

http://publications.lib.chalmers.se/records/fulltext/251317/251317.pdf



Availablility of Open Source ML/DL tools

Machine Learning Deep Learning

Nome Interfaccia
Nome Open Interface
Source?
CARET, GLMNET, Python, C++ Y Python, C++
" E1071 packages PyTorch

Python, R Y Python, R
O learn Keras v
\

Weka Y Python (Keras), C/C++,
* Java, JavaScript, R,Uul
: ia, Swift
Open for Innovation
KNIM e
Distributions of python:
-I Data repositories:

P I Web interface:
J x WinPython

)
ANACONDA ~



Overfitting

* ML algorithms are highly opportunistic: they learn what boosts
their performance during training, without worrying for

generalizability
Good fit
Weakness of army, economical crisis,
inefficiency of state, pressure of
derfitted i e barbarians, caused decline of Western
4 Underfitte 4 Good fit 4 Overfitte .
+ + . Roman Empire
i Poor fit
#
£4 I Roman

iy g
oy i,
L pad '
4 3

b +

i +
> >

empire was Overfitting
doing bad...

In 476 d.C., Odoacer, leading
an army of Herulian, Scirian,

Rugii, removed the emperor
Romolus Augustus



Covid diagnosis challenge

Table 1— DarkCovidNet test data performance metrics.

« A popular open-source dataset, COVIDx, was used to

Test set  Precision Recall F1 score Accuracy

develop many deep learning tools to diagnose COVID from

) . COVIDx 0.87+0.00 0.80+0.00 0.82+0.00 0.88+0.00
chest radiographies

External 0.44+0.00 0.43+0.00 041000 0.43+0.00

* |t was found that these models performed poorly on other LTHT  047£001 046£0.00 044001  0.45+0.00
datasets

COVID-19

Table 2 - CoroNet test data performance metrics.

Test set Precision Recall F1 score Accuracy

COVIDx 0.81+0.05 090+£0.01 0.84+0.05 0.88+0.03
External  0.18£0.07  0.34+0.02  0.19+0.03  0.35+0.01
LTHT 0.24+0.01  0.30£0.00  0.15£0.01  0.22+0.00

Table 3 — COVIDNet test data performance metrics.

Prediction probability: 0.938

Test set  Precision  Recall F1 score Accuracy
COVIDx 0.86+0.03 0.69+0.05 0.72+0.05 0.86+0.02
Figure 5: Grad-CAM saliency map generated by
DarkCovidNet COVIDx test data predictions. This is a correct External 0.34+0.05 0.36+0.01 0.29+0.02  0.3840.01
prediction of COVID-19, with a prediction probability of
0.938 LTHT 0.43+0.01 0.39+0.00 0.37+0.01 0.44+0.03

Harkness et al, https://arxiv.org/ftp/arxiv/papers/2109/2109.08020.pdf



Covid diagnosis challenge

* the pneumonia class within the COVIDx contains other pathologies,
including, pleural effusion, infiltration, consolidation, emphysema and
masses.

* The non-COVID data included paediatric chest Xray images which
were the only significant source of paediatric images within COVIDx

* the images had different resolutions: 1024x1024 and 299x299.
Models resize images (smaller images up-sampled and larger images
must be down-sampled). This risks generation of artefacts.

* A dataset had presence of disk-shaped markers in COVID-19 chest X-
rays



Black box

* Al methods are perceived as a “black box” which limits their use

* The clinician does not use a decision system when it’s not clear how it
reaches its decision
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Machine learning:
Look at the features selected and
used by ML
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Activation maps for deep learning

medicine chest, 0.13478
vacuum, 0.10249
water jug, 0.069547




Bias in dataset

 Bias in a dataset may include: confounding factors (e.g.
comorbidities) but also dataset imbalance in factors such as
gender, ethnic, social, environmental, or economic factors.

* A biased training dataset produces biased model (“garbage in,
garbage out”)

REUTERS

Amazon scraps secret Al recruiting tool that
showed bias against women




Data curation

 The MP can ensure that the images are acquired according to the protocol
required for correct Al use free from relevant imaging artifacts, and correctly
preprocessed and harmonized to reduce variability.

* MPs can significantly aid in the management of aggregate data from multiple
modalities (PET, CT, radiography, MRI, ultrasound, daily CBCT, hybrid imaging,
such as PET/CT and PET/MRI, 3D/4D and image time series, dose from RT etc.)

 MP should be involved in the development of metrics to assess the quality
and completeness of data, methods to curate data, and QA programs of data

a rC h ive S Acquisition Curat ion Storage Annotations
= dcnuf ca(non o

z {}‘.

i~ '

Data preparation for artificial intelligence in medical imaging: A .”KJJQZI;';"‘:
comprehensive guide to open-access platforms and tools | @g |
: o |

—

Physica Medica 83 (2021) 25-37

Oliver Diaz ™, Kaisar Kushibar " Rlchard Osuala “, Akis Linardos”, Lidia Garrucho, O /
Laura Igual %, Pena Radeva® Fred Prior " Polyxem Gkontra® Kar1m Lekadir * Data preparation pipeline prior developing and/or evaluation of Al solution.



Why physicists in Ale

* MP knows the basic physical mechanisms at the root of signal change
and image contrast

Ehsan Samei, Thomas M. Grist, Physica Medica 64(1):319-322

* MPs are also trained in mathematics and can understand the
principles of ML and DL better than other healthcare professionals

M. Avanzo

e “a change of focus from equipment to operation; from quality to
consistency of quality, from testing performance to estimating
outcome — and doing this with objective, standardisable and
guantitative methods”

Editorial
The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data | ® Mika Kortesniemi ’ Vll‘g inia Tsa pa ki , An nalisa Trianni ,

and deep learning in medical imaging and in relation to medical physics profession o Paolo RuUsso Ad Maas Ha ns-Erik KaIIma n . Marco
7 77 ’
ABSTRACT Brambilla, John Damilakis




Regulations

* The MP involved in research will be required to apply the statements
and recommendations released by governmental agencies regarding
privacy, security, secure access to health information, de-
identification of sensitive data, and obtaining informed consent

* General data protection regulation (GDPR) in Europe, HIPAA in the US

* Understand medical devices regulations regarding Al (CE marking,
FDA etc.)



Quality assurance of Al

International Journal of Medical Informatics 102 (2017) 71-79
Decaying relevance of clinical data towards future decisions in

data-driven inpatient clinical order sets

Jonathan H. Chen?®*, Muthuraman Alagappan¢, Mary K. Goldstein-¢, Steven M. Asch®,

Russ B. Altman®:¢

2 Department of Medicine, Stanford University, Stanford, CA, USA
b Geriatrics Research Education and Clinical Center, Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
€ Primary Care and Outcomes Research (PCOR), Stanford University, Stanford, CA, USA

4 [nternal Medicine Residency Program, Beth Israel Deaconess Medical Center, Boston, MA USA
¢ Departments of Bioengineering and Genetics, Stanford University, Stanford, CA, USA
f Center for Innovation to Implementation (Ci2i), Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA

Training with more longitudinal data (2009-2012) was no better
than using only the most recent (2012)data, unless applying a
decaying weighting scheme with a “half-life” of data relevance
about 4 months.

Table 1. Summary of stages in the adoption of a Al-based Clinical Decision Support System.

Stages Objective
Selection Pick most appropriate CDSS in terms of match with target use case and clinical
workflow, five “rights,” performance, and user acceptability
Acceptance Test that CDSS satisfies security, privacy, and safety requirements applicable to
testing medical devices, covering typical error scenarios, exceptions, and unforeseen

conditions

Commissioning

Prepare the CDSS for optimized use in the clinic (including potential customization)
and test its safety and performance within the local context

Implementatio

Roll out the CDSS and transition from the old workflow to the new after training the

n end users and managing their expectations
Quality Ensure that the quality of the CDSS remains fit for purpose by monitoring internal
assurance and external updates as well as context drift

Artificial intelligence-based clinical decision support in modern medical
physics: Selection, acceptance, commissioning, and quality assurance
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Quality assurance of Al

Phantoms

Fig. 1. (a) Digital ground
truth phantom used as input
to the MRI simulator.

Physica Medica Volume 50, June 2018, Pages 26-36

https://www.nature.com/articles/s41598-018-31509-z

Ground truth images

Zero noise added, R=1

Noise=1.0,R=1

Recon

Reconstructed

SER

Reconstructed

SER

Type Image Error Map (dB) Image Error Map (dB)

iFFT 20.40 20.27
CcG 20.40 20.23
™ 20.51 20.43
WL 20.45 20.35




Quality assurance in Al

* "aset of past cases, which includes difficult and rare cases along with a representative sample of
the local case population could be retrospectively tested if a database with past cases exists.”

* At the same time, a “repeated local validation” cohort should be assembled from time to time or
preferably continuously to critically reexamine the tests done during the commissioning stage.

* The repetition may help to ensure that the CDSS remains clinically valid”

Med Phys. 2020 May; 47(5): e228—e235



Safety/Risk Management

* The responsibility to prevent errors due to use of Al falls to humans.

e Automation errors:
e omission when humans do not notice the failure of an Al tool and

. cqrgmission when an action is performed following wrong Al’s decision when there is
evidence

* One of the key activities of the MP is patient safety management that is the
evaluation of medical devices and procedures to guarantee the safety of
patients.

* MPs are trained to prevent and analyze

accidents by using risk assessment
* failure modes and effects analysis (FMEA), o o

Physica Medica 48 (2018) 162-168

Contents lists available at ScienceDirect

Physica Medica

* incident reporting programs EFOMP Policy Statement
EFOMP policy statement 16: The role and competences of medical physicists

and medical physics experts under 2013/59/EURATOM

Carmel J. Caruana’, Virginia Tsapaki, John Damilakis, Marco Brambilla,
Guadalupe Martin Martin, Asen Dimov, Hilde Bosmans, Gillian Egan, Klaus Bacher,
Brendan McClean

EFOMP, United Kingdom



Multidisciplinary team

* «A fundamental role of the medical physicist is team member — working
together with physicians, technologists, nurses, therapists, engineers, and
even patients in the effective, efficient, and safe delivery of health care»

* “In a similar vein, another key role of the medical physicist is education and
training, not only of junior level and medical physicists in training but also
of other health care professionals including residents and fellows.”

Artificial intelligence will soon change the landscape of medical physics
research and practice
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