

Dosimetry electron beams

Paweł Kukołowicz

Department of Medical Physics, The Maria Sklodowska-Curie National Research Institute of Oncology 5 W.K. Roentgena st., 02-781 Warsaw, Poland

<u>www.pib-nio.pl</u>

 $D_{water} = M_{cor} \cdot N_{D,Air} \cdot \left(\frac{S_{col}}{\rho}\right)_{water} / \left(\frac{S_{col}}{\rho}\right)_{air} \cdot p_u$

$$N_{D,Air}$$
 $\left(\frac{S_{col}}{\rho}\right)_{water} / \left(\frac{S_{col}}{\rho}\right)_{air}$

callibration factor in terms of dose to Air; independent on energy ratio of dose to water and dose to air of mass stopping powers

$$p_{u} = p_{wall} \cdot p_{dis} \cdot p_{cav} \cdot p_{cel}$$
$$M_{cor}$$

perturbation correction factor; ratio for Energy Q signal we measure; corrected for the actual conditions (temperature and preassure)

$$D_{water} = M_{cor} \cdot N_{D,Air} \cdot \left(\frac{L_{\Delta}}{\rho}\right)_{water} / \left(\frac{L_{\Delta}}{\rho}\right)_{air}$$

www.pib-nio.pl

 $\cdot p_u$

 $\left(\frac{L_{\Delta}}{\rho}\right) / \left(\frac{L_{\Delta}}{\rho}\right)$

restricted mass stopping collision power

Raport 398

$$D_{water} = M_{cor} \cdot N_{D,water} \cdot k_{Q,Q_0}$$

callibration factor in terms of dose to water; dependent on energy

 k_{Q,Q_0}

factor which converts calibration factor from reference energy to user energy

signal we measure; corrected for the actual conditions (temperature and preassure)

$$k_{Q,Q_0} = \frac{\left(\frac{S_{col}}{\rho}\right)_{air,Q}^{w} \cdot p_{u,Q}}{\left(\frac{S_{col}}{\rho}\right)_{air,Q_0}^{w} \cdot p_{u,Q_0}}$$

$$\left(N_{D,water}\right)_{Q} = \left(N_{D,water}\right)_{Q_{0}}$$

www.pib-nio.pl

 $p_u = p_{wall} \cdot p_{dis} \cdot p_{cav} \cdot p_{cel}$

Energy of electron beams

The most probable Energy Ep,0 on the Surface is given by $E_{p,0} = 0,22 + 1,98 \cdot R_p + 0,0025 \cdot R_p \cdot R_p$ (Ep,0 is in MeV, R_{p} is in cm, R_{p} is the practical range) The mean electron Energy $E_{0,mean}$ at the Phantom Surface is given by $E_{0,mean} = 2.33 \text{ MeV/cm} \cdot R_{50,dose}$ R_{50} is the depth of 50% of dose which is obtained from R_{50} ionization (be given later) The mean electron Energy $E_{z,mean}$ at depth z is given by $E_{z,mean} = E_{0,mean} \cdot (1 - z/R_p)$

TABLE 16. REFERENCE CONDITIONS FOR THE DETERMINATION OF ELECTRON BEAM QUALITY (R_{50})

Influence quantity	Reference value or reference ch
Phantom material	For $R_{50} \ge 4$ g/cm ² , water
	For $R_{50} < 4$ g/cm ² , water or plas
Chamber type	For $R_{50} \ge 4$ g/cm ² , plane paralle
	For $R_{50} < 4$ g/cm ² , plane paralle
Reference point of the chamber	For plane parallel chambers, on window at its centre.
	For cylindrical chambers, on the the cavity volume
Position of the reference point of the chamber	For plane-parallel chambers, at For cylindrical chambers, $0.5 r_{c}$ interest
SSD	100 cm
Field size at phantom surface	For $R_{50} \le 7 \text{ g/cm}^2$, at least 10 c
	For $R_{50} > 7$ g/cm ² , at least 20 cm
Field size at phantom surface	For $R_{50} \le 7$ g/cm ² , at least 10 c For $R_{50} \ge 7$ g/cm ² , at least 20 cm ²

<u>www.pib-nio.pl</u>

haracteristics

astic

lel or cylindrical

lel

n the inner surface of the

he central axis at the centre of

t the point of interest r_{cyl} deeper than the point of

 $cm \times 10 cm$

 $cm \times 20 \ cm^a$

Construction of plane parallel chambers

	Window thickness	Electrode spacing	Collecting electrode diameter	Guard ri width
NACP01 (Scanditronix) Calcam-1 (Dosetek)	90 mg/cm ² 0.5 mm	2 mm	10 mm	3 mm
NACP02 (Scanditronix) Calcam-2 (Dosetek)	104 mg/cm ² 0.6 mm	2 mm	10 mm	3 mm

ing Recommended phantom material

> Polystyrene Graphite Water (with waterproof housing)

Water, PMMA

Construction of plane parallel chambers

	Window thickness	Electrode spacing	Collecting electrode diameter	Guard ring width	Recommended phantom material
Markus chamber PTW 23343 NA 30-329 NE 2534	102 mg/cm ² 0.9 mm (incl. cap)	2 mm	5.3 mm	0.2 mm	Water, PMMA
Scdx-Wellhöfer PPC 05	176 mg/cm² 1 mm	0.5 mm	10 mm	3.5 mm	Water
Holt chamber (Memorial) NA 30-404	416 mg/cm² 4 mm	2 mm	25 mm	5 mm	Polystyrene (phantom integr.)

Size of the beam for output factor

Rigorously

Field size at phantom surface For $R_{50} \le 7 \text{ g/cm}^2$, at least 10 cm \times 10 cm For $R_{50} > 7$ g/cm², at least 20 cm × 20 cm^a

The precise choice of field size is not critical, a convenient choice for the reference field size is that which is used for the normalization of output factors, usually 10 cm \times 10 cm at the phantom surface. Never < 10 x 10 cm!

R50 ionization -15 MeV

Depth of measurement

 $\begin{aligned} R_{50} &= 1.029 \ \mathrm{R_{50,ion}} - 0.06 \ \mathrm{g/cm^2} & (R_{50,ion} \leq 10 \ \mathrm{g/cm^2}) \\ R_{50} &= 1.059 \ \mathrm{R_{50,ion}} - 0.37 \ \mathrm{g/cm^2} & (R_{50,ion} > 10 \ \mathrm{g/cm^2}) \end{aligned}$

$zref = 0.6 \cdot R50 - 0.1 \text{ g/cm}^2$ (R50 in g/cm2)

This depth is close to the depth of the absorbed dose maximum zmax at beam qualities R50 < 4 g/cm2 (*Eo* 10 MeV), but at higher beam qualities is deeper than zmax.

k_{QQ0} for calibration in Co60 k_{Q}

Table 18 (TRS 398)

20.09.2023

<u>www.p...</u>

Calibration in electron beam

Chambers my be calibrated in Co60 or in electron beam (very seldom).

If in electron beam set of calibration factors are needed.

One calibration factor is valid only for one energy (for one quality index).

To measure for another energy the cross calibration procedure may be applied.

Report 398 – beam qulity index (for k_{QQ0})

R50 for depth dose curve (g/cm²)

- PDD measurements (ionization depth dose)
- SSD = 100 cm
- field size at the phantom surface at least:
- $10 \text{ cm} \times 10 \text{ cm} \text{ for } R50 < 7 \text{ g/cm}2 (Eo 16 \text{ MeV}),$
- $20 \text{ cm} \times 20 \text{ cm} \text{ for } R50 > 7 \text{ g/cm}2 \text{ (Eo 16 MeV)}.$

Corrections for influence quantities

$$D_{water} = M_{cor} \cdot N_{D,water} \cdot k_{Q,Q}$$

for preassure and temperature

$$k_{T,P} = \frac{(273.2 + T)}{(273.2 + T_0)}$$

 T_0 , P_0 are the temperature and preassure used for callibration

for humidity

no corrections for humidity are needed if the calibration factor was reffered to a relative humidity of 50% and is used in a relative humidity between 20 and 80%

0

$$D_{water} = M_{cor} \cdot N_{D,water} \cdot k_{Q}$$

Polarity effect

The influence of polarization on the chamber reading should be accounted for.

Correction factor

$$k_{pol} = \frac{\left|M_{+}\right| + \left|M_{-}\right|}{2M}$$

M+, M- are reading obtained for positive and negative polarity M reading for polarity used routinely

Corrections for influence quantities

(Rigorously) Ion recombination and polarity corrections are required at all depths, but these may be derived from a reduced set of representative measurements:

near the surface, the ionization maximum and the depths corresponding to 90% and 50% of the ionization maximum.

$$D_{water} = M_{cor} \cdot N_{D,water} \cdot k_{Q}$$

Polarity effect

User should inform teh callibration laboratory on the polarization potential and polarity used in daily measurements.

After changing polarity one should wait some time to obtain a stable reading of the chamber. For some chambers it may be even 20 min.

$$D_{water} = M_{cor} \cdot N_{D,water} \cdot k_{Q}$$

Ion recombination correction factor k_s

The two voltage method is used.

Reading is measured for two voltages V1 and V2. V1/V2 \geq 3

Correction factor

$$k_s = a_0 + a_1 \cdot \left(\frac{M1}{M2}\right) + a_2 \cdot \left(\frac{M1}{M2}\right)$$

Corrections for influence quantities

$$D_{water} = M_{cor} \cdot N_{D,water} \cdot k_{Q}$$

$$k_s = a_0 + a_1 \cdot \left(\frac{M1}{M2}\right) + a_2 \cdot \left(\frac{M1}{M2}\right)^2$$

Coefficients from Table 9	3.0	1
Report 398	3.5	1
Two sets of data for pulsed	4.0 5.0	1
and pulsed-scanned dose.		
Almost all beams are pulsed.		

<u>www.pib-nio.pl</u>

 V_{1}/V_{2}

2.0

2.5

	Pulsed	
ao	<i>a</i> 1	<i>a</i> ₂
2.337	-3.636	2.299
1.474	-1.587	1.114
1.198	-0.875	0.677
1.080	-0.542	0.463
1.022	-0.363	0.341
0.975	-0.188	0.214

Signal M is always corrected signal!

www.pib-nio.pl

Page 22

Cross calibration reference chamber calibrated in Co60

Cylindrical ion chamber ref calibrated in Co60 beam: $N_{ref,D,water,Q}$

There is no calibration factor for plane paralel chamber X.

We do measurements with both chambers in the electron beam of the energy with quality index Q_0 higher > 7.5 g/cm².

Corrected readings were M_{ref} , M_X

Cross calibration C060 beam measurements in energy $Q0 > 7.5 \text{ g/cm}^2$

For M_{ref} and M_X :

 $M_{ref} \cdot N_{ref,D,water,Q} \cdot k_{ref,Q,Q0} = M_X \cdot N_{x,D,water,Q} \cdot k_{X,Q,Q_0}$

From this equation we have $N_{X,D,water,Q}$

From Table 18 we have k_{chamber,Q,Q0} correction k factors for other energies.

TABLE 18. CALCULATED VALUES FOR k_Q FOR ELECTRON BEAMS, FOR VARIOUS CHAMBER TYPES CALIBRATED IN ⁶⁰Co GAMMA RADIATION, AS A FUNCTION OF BEAM QUALITY R_{50} (the data are derived using values for stopping-power ratios and perturbation factors, as given in Appendix II)

Ionization	Beam quality R_{50} (g/cm ²)																
chamber type ^a	1.0	1.4	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	7.0	8.0	10.0	13.0	16.0	20.0
Plane-parallel chan	nbers																
Attix RMI 449	0.953	0.943	0.932	0.925	0.919	0.913	0.908	0.904	0.900	0.896	0.893	0.886	0.881	0.871	0.859	0.849	0.837
Capintec PS-033			0.921	0.920	0.919	0.918	0.917	0.916	0.915	0.913	0.912	0.908	0.905	0.898	0.887	0.877	0.866
Exradin P11	0.958	0.948	0.937	0.930	0.923	0.918	0.913	0.908	0.904	0.901	0.897	0.891	0.885	0.875	0.863	0.853	0.841
Holt (Memorial)	0.971	0.961	0.950	0.942	0.936	0.931	0.926	0.921	0.917	0.913	0.910	0.903	0.897	0.887	0.875	0.865	0.853
NACP / Calcam	0.952	0.942	0.931	0.924	0.918	0.912	0.908	0.903	0.899	0.895	0.892	0.886	0.880	0.870	0.858	0.848	0.836
Markus			0.925	0.920	0.916	0.913	0.910	0.907	0.904	0.901	0.899	0.894	0.889	0.881	0.870	0.860	0.849
Roos	0.965	0.955	0.944	0.937	0.931	0.925	0.920	0.916	0.912	0.908	0.904	0.898	0.892	0.882	0.870	0.860	0.848
Cylindrical chambe	75																
Capintec PR06C (Farmer)	—	—	_	—	—	—	0.916	0.914	0.912	0.911	0.909	0.906	0.904	0.899	0.891	0.884	0.874
Exradin A2 (Spokas)	—	—	—	—	—	—	0.914	0.913	0.913	0.913	0.912	0.911	0.910	0.908	0.903	0.897	0.888
Exradin T2 (Spokas)	—		—	—	—	—	0.882	0.881	0.881	0.881	0.880	0.879	0.878	0.876	0.871	0.865	0.857
Exradin A12 (Farmer)	—	_	—	—	—	—	0.921	0.919	0.918	0.916	0.914	0.911	0.909	0.903	0.896	0.888	0.878
NE 2571 (Guarded Farmer)	—	_	—	—	_	—	0.918	0.916	0.915	0.913	0.911	0.909	0.906	0.901	0.893	0.886	0.876
NE 2581 (Robust Farmer)	—	_	—	_	—	—	0.899	0.898	0.896	0.894	0.893	0.890	0.888	0.882	0.875	0.868	0.859

Cross calibration for chamber X reference chamber calibrated in electron

- It is allowed becalibrate a chamber with a calibrated chamber ref
- in the secondary sandard laboratory in electron energy cross.
- Chambers are compared by alternately placing the chambers at z_{ref} for
- energy cross.

$$N_{D,w,Qcross}^{X} = \frac{Mref}{M_{X}} \cdot N_{D,w,Qcr}^{ref}$$

ross

Cross calibration in energy Q₀

To obtain calibration factor for energy Int

$$M_{ref,Q_0} \cdot N^{ref}_{D,w,Qcro_{ss}} \cdot k_{ref,Q_0,Q_{cross}} =$$

$$N_{D,w,QInt}^{X} = \frac{N_{D,w,Q_0}^{X}}{k_{X,Q_0,QInt}}$$

From this equation we have $N_{X,D,w,QInt}$

From Table 19 for energy *Int* we have k_{X,QInt,Q}

correction k factors for other Q energies.

www.pib-nio.pl

$M_{X,Q_0} \cdot N_{X,D,W,Q_0}$

TABLE 22. ESTIMATED RELATIVE STANDARD UNCERTAINTER REFERENCE DEPTH IN WATER AND FOR AN ELE BASED ON A CHAMBER CALIBRATION IN ⁶⁰Co GAMMA F

		Relative standard u	uncertainty (%)
Physical quantity or procedure	User chamber type: Beam quality range:	Cylindrical $R_{50} \ge 4 \text{ g/cm}^2$	Plane parallel $R_{50} \ge 1 \text{ g/cm}^2$
Step 1: Standards laboratory			
N_{Dw} calibration of secondary sta	andard at PSDL	0.5	0.5
Long term stability of secondary	standard	0.1	0.1
N_{Dw} calibration of user dosimeter	er at SSDL	0.4	0.4
Combined uncertainty of step 1^b		0.6	0.6
Step 2: User electron beam			
Long term stability of user dosin	neter	0.3	0.4
Establishment of reference condi	tions	0.4	0.6
Dosimeter reading M_{O} relative to	beam monitor	0.6	0.6
Correction for influence quantitie	es k,	0.4	0.5
Beam quality correction k_o (calc	ulated values)	1.2	1.7
Combined uncertainty of step 2	-	1.5	2.0
Combined standard uncertaint	y of D _{w,Q} (steps 1+2)	1.6	2.1

<u>www.pib-nio.pl</u>

INTY ^a OF	D _{w,O} AT
ECTRON	BEAM,
RADIATIC	N

TABLE 23. ESTIMATED RELATIVE STANDARD UNCERTAINTY^a OF $D_{w,Q}$ AT THE REFERENCE DEPTH IN WATER AND FOR AN ELECTRON BEAM, BASED ON A CHAMBER CALIBRATION IN A HIGH ENERGY ELECTRON BEAM

		Relative standard	uncertainty (%)
Physical quantity or procedure	User chamber type: Beam quality range:	Cylindrical $R_{50} \ge 4 \text{ g/cm}^2$	Plane parallel $R_{50} \ge 1 \text{ g/cm}^2$
Step 1: PSDL N _{D,w} calibration of user dosime Combined uncertainty in step 1	ter at PSDL	0.7 0.7	0.7 <i>0.7</i>
Step 2: User electron beam Long term stability of user dosi	meter	0.3	0.4
Establishment of reference cond Dosimeter reading M_{\odot} relative t	ditions to beam monitor	0.4 0.6	0.6 0.6
Correction for influence quantit Beam quality correction k_{Q,Q_o} (ties k_i calculated values)	0.4	0.5
Combined uncertainty in step 2 Combined standard uncertain	nty of $D_{w,Q}$ (steps 1+2)	1.3 1.4	1.2 1.4

<u>www.pib-nio.pl</u>

Results

Calibration coefficients for PTW 23343 and PPC05 ionization chambers

Iwona Grabska, Paweł Kukołowicz

Descriptive statistics

	PTW 23343	PPC05
	44	13
l _{D, w} [cGy/nC]	55.03	58.35
nC]	54.85	58.35
of <i>N_{D, w}</i> [cGy/nC]	1.44	2.04
of <i>N_{D, w}</i> expressed as a c mean value of <i>N_{D, w}</i> [%]	2.61	3.50
	54.40	56.86
	55.99	60.08
	57.85	62.51
	51.22	55.52
	1.13	1.13
	51.22, 51.85, 51.22	none

Central axis depth dose distribution

The measurement of a central axis depth dose distribution should follow the procedure given in Section 7.3.2 for the measurement of R_{50} . If an ionization chamber is used, the measured depth ionization distribution must be converted to a depth dose distribution.³² For a beam of quality R_{50} , this is achieved by multiplying the ionization current or charge at each measurement depth z by the stopping-power ratio s_{wair} at that depth. Values for s_{wair} are given in Table 20 as a function of R_{50} and the relative depth z/R_{50} . Linear interpolation between table entries is sufficient. These stoppingpower ratios are calculated using Eq. (66) in Appendix II [91].³³

TABLE 20. SPENCER-ATTIX STOPPING-POWER RATIOS ($\Delta = 10 \text{ keV}$) WATER TO AIR ($s_{w,air}$) FOR ELECTRON BEAMS, AS A FUNCTION OF BEAM QUALITY R_{50} AND RELATIVE DEPTH z/R_{50} IN WATER (the data are derived using Eq. (66) in Appendix II [91])

							Beam quality R_{50} (g/cm ²)										
	1.0	1.4	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	7.0	8.0	10.0	13.0	16.0	20.0
z_{ref} (g/cm ²):	0.5	0.7	1.1	1.4	1.7	2.0	2.3	2.6	2.9	3.2	3.5	4.1	4.7	5.9	7.7	9.5	11.9
$s_{w,air}(z_{ref})$: Relative depth	1.102	1.090	1.078	1.070	1.064	1.058	1.053	1.048	1.044	1.040	1.036	1.029	1.022	1.010	0.995	0.983	0.970
in water z/R_{50}																	
0.02	1.076	1.060	1.042	1.030	1.020	1.012	1.004	0.997	0.991	0.986	0.980	0.971	0.963	0.950	0.935	0.924	0.914
0.05	1.078	1.061	1.044	1.032	1.022	1.014	1.006	1.000	0.994	0.988	0.983	0.974	0.965	0.952	0.937	0.926	0.916
0.10	1.080	1.064	1.047	1.036	1.026	1.018	1.010	1.004	0.998	0.992	0.987	0.978	0.970	0.957	0.942	0.931	0.920
0.15	1.083	1.067	1.050	1.039	1.030	1.022	1.014	1.008	1.002	0.997	0.992	0.983	0.975	0.961	0.946	0.935	0.924
0.20	1.085	1.070	1.053	1.043	1.034	1.026	1.019	1.012	1.006	1.001	0.996	0.987	0.979	0.966	0.951	0.940	0.929
0.25	1.088	1.073	1.057	1.046	1.037	1.030	1.023	1.017	1.011	1.006	1.001	0.992	0.984	0.971	0.956	0.945	0.933
0.30	1.091	1.076	1.060	1.050	1.041	1.034	1.027	1.021	1.016	1.010	1.006	0.997	0.989	0.976	0.961	0.950	0.938
0.35	1.093	1.079	1.064	1.054	1.045	1.038	1.032	1.026	1.020	1.015	1.011	1.002	0.995	0.982	0.966	0.955	0.943
0.40	1.096	1.082	1.067	1.058	1.049	1.042	1.036	1.030	1.025	1.020	1.016	1.007	1.000	0.987	0.972	0.960	0.948
0.45	1.099	1.085	1.071	1.062	1.054	1.047	1.041	1.035	1.030	1.025	1.021	1.013	1.006	0.993	0.978	0.966	0.953
0.50	1.102	1.089	1.075	1.066	1.058	1.051	1.046	1.040	1.035	1.031	1.027	1.019	1.012	0.999	0.984	0.971	0.959
0.55	1.105	1.092	1.078	1.070	1.062	1.056	1.051	1.045	1.041	1.036	1.032	1.025	1.018	1.005	0.990	0.977	0.964
0.60	1.108	1.095	1.082	1.074	1.067	1.061	1.056	1.051	1.046	1.042	1.038	1.031	1.024	1.012	0.996	0.984	0.970
0.65	1.111	1.099	1.086	1.078	1.072	1.066	1.061	1.056	1.052	1.048	1.044	1.037	1.030	1.018	1.003	0.990	0.976
0.70	1.114	1.102	1.090	1.082	1.076	1.071	1.066	1.062	1.058	1.054	1.050	1.043	1.037	1.025	1.010	0.997	0.983
0.75	1.117	1.105	1.094	1.087	1.081	1.076	1.072	1.067	1.064	1.060	1.057	1.050	1.044	1.033	1.017	1.004	0.989

20.09.2023

S_{w,air} for electron beams Maria Sklodowska-Curie National Research Institute of Oncology

$$s_{w,air}(z) = \frac{a+bx+cx^2+dy}{1+ex+fx^2+gx^3+h}$$

$$x = \ln(R50)$$
 and $y = z/R50$

a = 1.075 b = -0.5087 c = 0.0887 d = -0.084e = -0.4281 f = 0.0646 g = 0.00309 h = -0.125

Note that this procedure neglects any variation in the perturbation factor with depth. This is a good approximation for well guarded plane-parallel chamber types. For plane-parallel chambers that are not well guarded and for cylindrical chamber types, changes in the perturbation factor are significant and must be accounted for.

Guard ring (GR) is an annular ring surrounded the charge-collecting electrode. The voltage of guard ring is the same as chargé-collecting electrode.

GR ensures that the electric field lines near the edge of the collecting electrode remain straight. The collecting volume is accurately defined by the area of the collecting electrode and the electrode separation.

GR minimizes the extent of charge leakage from the volume outside of the collecting volume.

www.pib-nio.pl

https://radiologykey.com/parallel-plate-ionization-chamber/

Output factors measurement

OF should be measured at dose max (z_{max}) .

We have to be aware of the variation of the depth of maximum, particularly for small beams.

Another problem is to define the OU for other SSD. There is a complicated dependence of OF on SSD particularly for small beams (virtual source). We encourage to measure additional sets of measurements for other SSDs, e.g. 110 cm, 115 cm.

Percent depth dose for electron beams dependence on the beam size

DD for electron beams 15 MeV, SSD = 100 cm

www.pib-nio.pl

Page 37

TABLE 6. ELEMENTAL COMPOSITION (FRACTION BY WEIGHT), NOMINAL DENSITY AND MEAN ATOMIC NUMBER OF COMMON PHANTOM MATERIALS USED AS WATER SUBSTITUTES (for comparison, liquid water is also included)

	Liquid water ^a	Solid water WT1 ^a	Solid water RMI-457	Plastic water	Virtual water	PMMA ^{a,b}	Polystyrene ^a	Tissue equivalent plastic A-150 ^a
Н	0.1119	0.0810	0.0809	0.0925	0.0770	0.0805	0.0774	0.1013
С		0.6720	0.6722	0.6282	0.6874	0.5998	0.9226	0.7755
Ν		0.0240	0.0240	0.0100	0.0227			0.0351
0	0.8881	0.1990	0.1984	0.1794	0.1886	0.3196		0.0523
F								0.0174
C1		0.0010	0.0013	0.0096	0.0013			
Ca		0.0230	0.0232	0.0795	0.0231			0.0184
Br				0.0003				
Density								
(g/cm^3)	1.000	1.020	1.030	1.013	1.030	1.190	1.060	1.127
\overline{Z}^{c}	6.6	5.95	5.96	6.62	5.97	5.85	5.29	5.49

USE OF PLASTIC PHANTOMS it is strongly unrecommended

Plastic phantoms may only be used at beam qualities $R_{50} \le 4 \text{ g/cm}^2$ (approximately $E_0 \leq 10$ MeV).

Depth is scaled with: $z_{water} = z_{plastic} \cdot c_{pl} (g/cm^2)$

We use electron beams less and less.

Complicated dosimetry for electron beams has been

replaced by no less complicated dosimetry of small fields.

<u>www.pib-nio.pl</u>

etry of small fields.

Thank you for your attention.

