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Recommendations on accuracy in radiotherapy
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3% (relative sd) on the delivered absorbed dose to the patient
was recommended as the tolerance level on accuracy in dose delivery

Thwaites
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Precision of dose delivery matters
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Peters L J et al. JCO 2010;28:2996-3001

Critical Impact of Radiotherapy Protocol Compliance and Quality
in the Treatment of Advanced Head and Neck Cancer: Results From TROG 02.02

At TMC review, 25.4% of the patients had noncompliant plans but 
none in which QARC- recommended changes had been made. At 
secondary review, 47% of noncompliant plans (12% overall) had
deficiencies with a predicted major adverse impact on tumor 
control. Major deficiencies were unrelated to tumor subsite or to T 
or N stage (if N), but were highly correlated with number of patients
enrolled at the treatment center ( five patients, 29.8%;  20 patients,
5.4%; P  .001). In patients who received at least 60 Gy, those with 
major deficiencies in theirtreatment plans (n  87) had a markedly
inferior outcome compared with those whose treatment was 
initially protocol compliant (n  502): 2 years overall survival, 50% v 
70%; hazard ratio (HR), 1.99; P  .001; and 2 years freedom from 
locoregional failure, 54% v 78%;HR, 2.37; P  .001, respectively.
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Major sources of uncertainty in dose delivery

1. Absolute and relative dosimetry

2. Calculation of dose distribution using a treatment planning system

1. Preparation of TPS

2. Algorithm of dose calculation

3. Implementation of irradiation

1. Accuracy of patient positioning

2. Changes of patient anatomy
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Estimates of Uncertainty (in terms of one standard deviation)

in absolute dose for megavoltage photons.
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AAPM REPORT NO. 85

http://www.pib-nio.pl/


www.pib-nio.pl

Calculation of dose distribution

We have no control over the algorithm used

• we are responsible for knowing the results of the verification of the 

calculations for a given treatment planning system (implementation)

• literature

We have an impact on the quality of the entered data

and tuning of some model parameters

• commissioning of radiotherapy treatment planning system

• verification of the calculation of dose distributions
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Basic features of a good TPS

Accuracy of calculations

Speed of calculations

Wide range of applications

User friendly

Stable

?
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Varian - Eclipse

Elekta - Monaco

RaySearch – RayStationPinnacle - Philips
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Theoretical basis of photon beam therapy 

modeling

(Transient) Charged Particle Equilibrium
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Transient Charged Equlibrium

Exist

monoenergetic beam of Energy hν
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Fluence and Energy Fluence

Fluence –  [1/m2]

number dN of particles (photons) incident on a 

sphere of cross-sectional area da

Energy fluence – ψ [J/m2]

energy dE incident on a sphere

of cross-sectional area da
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Energy deposition
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Photons energy is transferred to 

electrons → Kerma

Φ=ΔN/ ΔA
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Charged equilibrium

Electron equilibrium exists when:

for every charged particle with momentum p

entering the volume V,

there is a particle with momentum p leaving the 

volume V

As a result

(almost) all energy transferred by photons

to V is absorbed
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Kerma

Kinetic Energy Released per unit MAss
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Bremsstrahlung – energy lost on radiation

Dose = Kerma ∙ (1-g) = Kermacolision = Kc

g is the part of electron energy

lost for bremsstrahlung

And everything in dose deposition

becomes simple!
Energy of electron

(MeV
Range of electrons

(g/cm2)
fraction on radiation

(g)

0.1 0.0143 0.0006

1.0 0.4359 0.0036

2.0 0.9720 0.0071

4.0 2.019 0.0317

10.0 4.917 0.0404
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Transient Charged Particle Equilibrium
TCPE

TCPE exists if the absorbed dose D is proportional to the 

collision Kerma Kc.

If energy spectrum of photons is constant the constant

of proportionality is the same! It depends on the range of 

electrons and linear attenuation coefficient.

• in the next slide the constant of proportionality is overestimated!
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TCP

No TCP

difference overestimated

Charged equilibrium (?)

Blues dose
Dots Kerma
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Fluence – Energy fluence

What reaches the absorbent

• Energy fluence spectrum (SFE)

• Photons

• Electron contamination

Spatial distribution of energy fluence

Interaction of radiation with absorber 

(energy deposition)

• Water

• Real situation (inhomogenous)

• Transit Charged Equlibrium Exists

• No Transit Charged Equlibrium

20.09.2023 Page 17
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Determination of effective

bremsstrahlung spectra - methods

Reconstruction of spectra from measured transmission data

(very cumbersome and difficult)

Reconstruction of 4-MV bremsstrahlung spectra from measured transmission data, Huang et 

al., doi.org/10.1118/1.595356

Unfolding linac photon spectra and incident electron energies from experimental transmission 

data, with direct independent validation, McEwen, Rogers, doi.org/10.1118/1.4754301
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Linear attenuation coefficient
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Transmission measurements

J (many) measurements of transmission T

allows to reconstruct a photon spectrum

measurements should be very precise

uncertainty < 0,01% for large T

uncertainty < 0,01% for small T

20.09.2023 Page 20

experimental set-up

Huang et. al., Med. Ph. ,1983,  10(6)
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What attenuating materials?
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Pb for E < 1,8 MeV

Al for E > 1,8 MeV

Huang et. al., Med. Ph. ,1983,  10(6)
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Spectrum reconstruction
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Simpson’s numerical method of integral calculation

• for attenuator of thickness xi,
• energy range was devided into J compartments of h

•the middle of the compartment is hj

1  dla j = 1 i J

j =      4 dla j = 2, 4, …, J-1

2  dla j = 3, 5, …, J-2
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Determination of effective

bremsstrahlung spectra - methods

Monte Carlo methods; they require a precise 

knowledge of the treatment head design.

Mohan, et al. Energy and angular distribution of 

photons from medical linear accelerators.,

10.1118/1.595680

Rogers, et al. BEAM: A Monte Carlo code to simulate 

radiotherapy treatment units, 

doi.org/10.1118/1.597552
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Cross sectional view of 6 MV Elekta
linear accelerator head

Sadoughi
J Med Signals Sens. 2014 Jan-Mar; 4(1): 10–17

http://www.pib-nio.pl/
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Determination of effective

bremsstrahlung spectra

Determination using an iterative technique to minimise the difference between 

calculated and measured depth dose curves

• set of dose distribution for pencil beams for monenergetic beams

Determination of effective bremsstrahlung spectra and electron contamination for photon dose calculations, 

Ahnesjo, Andreo, 10.1088/0031-9155/34/10/008 

This method is used currently in most of TPS!
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http://www.pib-nio.pl/
https://doi.org/10.1088/0031-9155/34/10/008


www.pib-nio.pl

Calculation of Depth Dose for 

monoenergetic beam

Mechanism of dose deposition

• primary dose

• dose deposited by electrons which received energy from 

the photon in the first interaction which occurred in the 

absorbent

• scattered dose

• dose deposited by electrons which received energy from 

scattered photons interaction which occurred in the 

absorbent

20.09.2023 Page 25

Sontag, Med. Phys. 1995, 22 (6)
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Primary and scattered dose

For high energies scattered dose is small

in comparison to primary dose!

The larger is energy the smaller is scattered

component!
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Sontag, Med. Phys. 1995, 22 (6)
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Transient Charged Equlibrium

Exist

monoenergetic beam of Energy hν
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Primary dose

Dependence of the fluence in air on a given distance

• inverse square law
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Another notation

Total energy released per unit mass - TERMA
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Fluence in water
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Kernel - Point Spread Function
Anders A. Ahnsjö, Med.Phys. 16 (4), 1989

Ө - azimuthal angle
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2/))exp()exp((),( rrbBraArhw  

primary scattered

 bBaA ,,, Table in Ahnesjo paper
for 4, 6, 10 and 15 MeV

X 0,4 MeV

interaction
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Kernels
Monte Carlo

20.09.2023 Page 32

0,4 MeV 1,25 MeV 10 MeV

Acta Oncologica, 1987, Ahnesjo
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Monoenergetic Depth Dose - Kernel
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X 0,4 MeV

     '3''),( rdrrArThrD hvhv

Kernel

interaction Med.Phys. Papanikolau 1993,5,1327-1336.
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Monte Carlo

Monte Carlo simulation is the method of radiation

transport modeling in which one uses knowledge 

of the probability distributions governing the

individual interactions of electrons and photons in 

materials to simulate (track) the random 

trajectories or histories

of individual particles

• several Monte Carlo codes are used

20.09.2023 Page 34
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Monte Carlo

example

20.09.2023 Page 35
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Spectrum from monoenergetic DD

• The aim is to minimize the differences between calculated

and measured dose ditributions
• Ψ(hν) is search

• depth doses may be measured for several beam sizes and for a range of depths (depth > 5 cm)
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Generation of Energy Fluence

Electron hits the target and Bremstrahlung radiation (photons) is produced

Typical energy spectrum for linear accelerators

20.09.2023 Page 37

6 MV
15 MV

For dose distribution calculations energy spectrum should be known!
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Questions to be addressed concerning spectrum

1. Does spectrum depend on beam size?

• dependence is negligible (dosimetry)

2. Does spectrum depends on wedges

• Yes, for physical wedges; a significant problem for Electa (60o motorized wedge)

3. Dose spectrum depends on position in beam?

• YES, for very precise calculations it should be taken into account in the model

Do flatening filter and flatening filter free accelarators have different spectrum,

• YES

20.09.2023 Page 38
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Dependence of the photon energy on the 

distance from the central axis

HVL - Half Value Layer

20.09.2023 Page 39
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Iwasaki, Medical Physics
Volume 33, Issue 11Nov 2006

Dependence of the photon Energy

on the distance from the central axis

4 MV
15 MV

FF beams

http://www.pib-nio.pl/
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10 MV FF and FFF spectrum

depth 14.5 cm; SSD 85.5 cm, field size 5 × 5 cm2
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Matuszak, et al.
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The simplest good model 

Tissue Air Ratio - Clarkson (Cunningham) algorithm
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TAR

Does not depend on SSD!

• the only hindrance is a neccesity of manipulation with 

beam size.

TAR is a very useful tool for converting dosages from one 

distance to another!

This is a very useful tool for checking MU calculations for 3D.

When there is CPE it gives fairly accurate results!
20.09.2023 Page 43
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TAR at dmax = Back Scatter Factor (BSF)

Peak Scatter Factor
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CO 60 4 MV 6 MV 10 MV 15 MV 24 MV
TPR20/10 0,571 0,626 0,67 0,732 0,765 0,805
% dd (10) 57,9 62,9 66,7 73,1 78,4 85,8
m (cm-1) 0,066 0,057 0,049 0,039 0,034 0,027

t 0,106 0,113 0,109 0,106 0,092 0,0875
n 7,3338 4,8832 4,9173 4,1681 3,8347 3,6858

nX

Xt
XPSF

r

r
r




1)(
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TAR and Depth Dose

Calculations with TAR depends very little on BSF
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Dose calculations with TAR
for square field A

Dwater – we have from measurements
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Primary and Scatter Dose
it is useful for calculations of dose beneath a block
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Circular symmetry and TAR

TAR (A,A) = TAR (r) if A ∙ A = π ∙  r2
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Thank you for your attention!
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