

## Linac Acceptance Testing and Commissioning

#### Chris Trauernicht

Head of Division: Medical Physics – Tygerberg Hospital Associate Professor – Stellenbosch University South Africa

cjt@sun.ac.za

#### Acceptance Testing

#### Why?

Assure the accelerator performs according to specifications As stated or claimed by the manufacturer As agreed to by specifications before purchase Be sure we understand the equipment Avoid surprises after implementation







#### Steps in Acceptance Testing

- Configuration
   Options
   Equipment needed
   Protection survey
   Mechanical tests
- 6. Radíatíon ísocenter test
- 7. Beam characterístics
- 8. Dosímetry
- 9. Dynamic therapy

#### Configuration

Did I get what I asked for?

Is everything present?

Not just linac!!!

Also accessories: patient immobilization devices ...

#### Options

Are the optional items included? High dose rate capabilities Electron applicators Special couch top

Room decoration?

#### Scale convention



# Get familiar with the linac and accessories





- 5 Head-end hook
- 5 Head-end hook
- 6 Removable accessory rail

11 Hand pendants

#### Equipment needed

What equipment do I have to have to do the acceptance testing? Must I have it or will manufacturer provide it?

If I have my own equipment, can I use it?

## Typical equipment

- Spirit level
- Water phantom (x2 at least)
- Dosimetry scanning system
- Scanning (waterproof) ion chambers
- Vernier caliper?
- Tape measure
- Graph paper (mm, not inches or log)
- Film (either gafchromic or need a developer)
- Electrometer and ion chamber
- Densitometer

#### Protection Survey





#### Protection Survey

- Evaluate doses and doserates under testing conditions (usually not the normal conditions)
  - Maximum field size (40 x 40 cm  $\rightarrow$  diagonal = 56.6 cm)
  - Maximum dose rate
  - Various gantry angles
  - Primary beam (walls and roof)
  - Scatter (with phantom)

#### Radiation Area Survey

- Adjacent working areas, waiting rooms, roof...
- Interlocks
- Warning systems (beam-on lights, signage)



#### **Radiation Protection**

Head leakage? (probably manufacturer)

Neutrons?

Collimator transmission? Jaw transmission?

Beamstopper transmission if applicable



## $\underset{\text{Just when you thought it could never happen}{\text{IRONY}}$

#### Survey



#### Survey

Please attach a diagram or plan of the appropriate enclosure indicating the corresponding position on premises (e.g. A, B, etc):

Highest photon energy =  $(\Delta \dots MV; Largest collimator opening = (\Delta 0, x, (\Delta 0, cm^2; Dose rate used during measurements (<math>\tilde{D}$ ) =  $(\Delta 0, MV; Total weekly workload (W) at isocentre = (\Delta 0, Gy/weekly)$ 

| Position on premises            | Measurement (R) = (µSv/h)                      | Calculation of weekly dose at a point<br>= R x WUT/ D = μSv/week |  |
|---------------------------------|------------------------------------------------|------------------------------------------------------------------|--|
| A Entrance gate                 | 23, 151/hr (max) (Y)                           | 57,5 ySV/wk Chill occ                                            |  |
| B Outside wall                  | (y)                                            |                                                                  |  |
| C Outside wall                  | (y)                                            | a                                                                |  |
| D Outside wall                  | DI: 2450/hr D2: * D3: 18451/hr (Y)             | max(exc) D2); 45 usv/wk                                          |  |
| E Outside wall Kontrol Pourel   | <1 usu/hr (r)                                  | <25 usul week                                                    |  |
| E Control panel (not indicated) | (י)                                            | ( ) ) )                                                          |  |
| G Up direction (not indicated)  | on roof; 3 ysight max at generator; 45, 5, 1/2 | 2 mSU/wk with accupance 1/6                                      |  |
| H Skyshine (not indicated)      | (γ)                                            | , , , , , , , , , , , , , , , , , , ,                            |  |
| A Entrance gaté                 | (n)                                            |                                                                  |  |
| D: do. C as white income        | iesta di llia que de bin                       | Idad access Hoslind                                              |  |
| and the second                  | fixing strending currently delig               | addition functions show that                                     |  |
|                                 |                                                |                                                                  |  |
|                                 |                                                |                                                                  |  |
|                                 |                                                |                                                                  |  |
|                                 |                                                |                                                                  |  |
|                                 |                                                | ,                                                                |  |
|                                 |                                                |                                                                  |  |

 Yes
 No
 N/A
 Radiation levels  $\leq$  20  $\mu$ Sv/week for all uncontrolled areas and members of the public?

 Yes
 No
 N/A
 Radiation levels  $\leq$  100  $\mu$ Sv/week for radiation workers?

#### Mechanical Tests

Isocenter tolerance Mechanical Light field Radiation field

#### Isocenter

Mechanical

Collimator, gantry, couch



#### Light field



Graph paper very useful here...

Field size – actual vs displayed Are the crosshairs at the isocenter? Do they move during rotation? Distance from jaw edge to crosshairs

#### Angle readout calibration

Collimator, gantry, couch

Digital:  $\pm 0.5^{\circ}$ Mechanical  $\pm 1^{\circ}$ 



#### Couch calibration

Vertical, lateral, longitudinal (± 2 mm) Couch rotation

Digital: ±0.5°

Mechanical  $\pm 1^{\circ}$ 

Couch sag



#### Optical Distance Indicator (ODI)

±1mm @ 100 cm ±3mm @ 80 and 130 cm

ODI vs front pointer

#### Light vs radiation field alignment

Mark lightfield on film (not always easy)

Irradiate, but not too much

Compare light-rad coincidence ± 2 mm

This is where a densitometer is useful – scan film to find 50 % isodose



#### BEAM UNIFORMITY AND COINCIDENCE OF LIGHT FIELD WITH RADIATION FIELD Document 690-0; Figure 1

MACHINE: Clinac 2100C 6 MV Xrays TRIMMER POSITION: n/a

COLLIMATOR ORIENTATION: 0 degrees SOURCE/TARGET TO FILM DISTANCE: 80 cm





#### Spoke shots

Collimator spoke shot Gantry spoke shot



#### MLC calibration

Picket fence test or similar



#### Dosimetry



Beam characteristics determined by scanning

Tank level and aligned!

Correct for effective point of measurement of selected scanning chamber!

Correct field size

#### Beam energy



| Energy | d <sub>max</sub> | var.    | <sup>%dd</sup> 10 | var. |
|--------|------------------|---------|-------------------|------|
| 4      | I.2cm            | ±0.15cm | 63.0%             | 2%   |
| 6      | 1.6cm            | ±0.15cm | 67.0%             | ١%   |
| 10     | 2.4cm            | ±0.15cm | 74.0%             | ١%   |
| 15     | <b>2.9</b> cm    | ±0.15cm | 77.0%             | ١%   |
| 18     | 3.3cm            | ±0.15cm | 80.0%             | ١%   |

#### Electron energy

| Energy | <b>90</b> % | 80%  | 50%  | 30%   |
|--------|-------------|------|------|-------|
| 4      | 0.89        | 1.00 | I.26 | ≤2.00 |
| 6      | 1.71        | 1.90 | 2.30 | ≤2.60 |
| 9      | 2.68        | 2.95 | 3.50 | ≤3.90 |
| 12     | 3.77        | 4.15 | 4.89 | ≤5.40 |
| 16     | 4.87        | 5.45 | 6.49 | ≤7.30 |
| 20     | 5.52        | 6.55 | 8.13 | ≤9.30 |

Depths in cm, tolerance ±1mm

#### Field flatness and symmetry

Flatness: variation over central 80 % of the field: use 10x10 or larger, flatness  $\leq \pm 3\%$  of mean of max and min

Symmetry: dose rate at points equidistant from the CAX must not differ by >2%



#### **Field Flatness**





#### Electron field flatness

Test performed in same manner, but specification less stringent (5 % over central 80 % of field for 10 x 10 and 25 x 25 cm field)

#### Interlocks



Symmetry interlock must be tested

Technician creates an asymmetric beam  $\rightarrow$  beam on  $\rightarrow$  trip (hopefully)

#### Dosimetry

Is linac calibrated? TRS398 Reproducibility of delivered dose Long-term reproducibility Reproducibility with gantry angle Linearity of dose monitor Reproducibility with dose rate Accuracy of dose rate (Gy/min)
### Independent check on dosimetry

Can also happen later, but very important that it is done

Get another medical physicist to do TRS398 with their equipment on your unit

Do a dosimetry audit (IAEA or similar)

Results should be within 2%

# Dynamic Therapy

# Wedges



- Both hard and dynamic wedges
- Slope of isodose should agree with intended slope
- Dose delivery per unit jaw movement should agree with intended

# Special considerations

?unusual machines / characteristics / techniques

# Special Considerations

- Portal Imager
- kV Imager
- R&V system

# Acceptance Testing Completed

Machine meets your specifications
Safe to use
Payment can be made
Now we start commissioning!

#### Acceptance Documents

Lots of pages to sign, installation engineer takes originals, good idea to make copies

# Commissioning



# Why do we commission a linac?

#### Goal:

- Generate data for TPS
- Generate data for MU check program
- Establish baseline values for future comparison
  - Establish daily / monthly QA standards
  - Have reference data to look for machine changes

### Beware of shortcuts!









# Commissioning

Long and tedious process! Coffee will be your friend

![](_page_48_Picture_2.jpeg)

#### Coffee for the Physicists

![](_page_49_Picture_1.jpeg)

![](_page_49_Picture_2.jpeg)

# Commissioning

![](_page_50_Picture_1.jpeg)

Mistakes will happen, recognize them and fix them, do not cover them up!

![](_page_50_Picture_3.jpeg)

![](_page_51_Picture_0.jpeg)

# Commissioning

Do commissioning in pairs if possible

Cross-checking is good!

![](_page_52_Picture_3.jpeg)

'cause he still doesn't know what he's doing wrong...

![](_page_52_Picture_5.jpeg)

# Purpose

![](_page_53_Picture_1.jpeg)

- Determine and record beam characteristics
- Acquire data for TPS, manual calculation

How much data? What data?

- Must have a minimum data set necessary for treatment planning and manual calcs
- Depends on TPS

#### References

- TG 45 & 53 & 106: General data requirements for commissioning & 3D planning systems
- IAEA Textbooks

![](_page_54_Picture_2.jpeg)

Inspectrum of Relations (Resing), University of Promytania, Pistudgina, Promytania (1994) Chen Wei Cheng Diportant of Relations (Resing), Newtonian University Hamphal Merristian, New Jerris (1994) Rocket J. Matte Merristiana Media Provid Services, Services, Bar (1992) Action Alvine, Diporte Distortion, and Bucketon Scientifican (Al-Tel of Uppeals, South Uppeals, Distortion, and Bucketon Scientifican (Al-Tel of Uppeals, South Merristian, Media Provid Services, Star (1994) Services of Relations (Resining: Merris Star (Provide), Benador, Benador, Loneous, 1998) X. Alter Li Diportenti of Relations Chemistry, Metric Cheng of Weissen, Mitmaker, Mitanege (2005) Basebace Concententian Real-Rogen (Papers), Distorting (Science Cheng, New Orling), Mitmaker, Mitanege (2005) Basebace (Science Star) Basebace Radiation Oncology Physics: A Handbook for Teachers and Students

![](_page_54_Picture_6.jpeg)

 Setting Up a Radiotherapy Programme: Clinical, Medical Physics,

![](_page_54_Picture_8.jpeg)

**Radiation Protection and Safety Aspects** 

![](_page_54_Picture_9.jpeg)

AEA

#### Beam data requirements

Photons

Electrons

Other data (eg tray distances)

Luckily, this is not guesswork, because any TPS should have a manual of what data is needed

Choose correct tools for beam data acquisition Develop a plan, make a spreadsheet

![](_page_56_Picture_0.jpeg)

![](_page_56_Picture_1.jpeg)

# Minimum data

- What coordinate system convention?
  - Jaws X and Y, gantry angle, bed angle ...
- TRS398 calibration
- CAX depth doses (PDD or TMR/TPR)
- Dose profiles at different depths
- Isodose distributions (open/wedges)
- Output factors (head, phantom, total scatter factors) at what depth?
- Wedge and tray factors
- Distances

# Data continued

- Off-axis ratios
- Entrance dose / build-up region
- What reference depth?
- TPS data verification

Special considerations: SRS, TBI, IORT, TSE...

# Hand calcs / MU check data

- Hand calc data should not be derived from the TPS  $\rightarrow$  loss of independence
  - At what depth do you define output factor for hand calcs? (usually dmax)
  - Single wedge factor or not?

#### Output factor at wrong depth?

![](_page_60_Figure_1.jpeg)

# Equipment

Scaning tank (50x50x50 cm)
Scan in 3 directions
At least 40 cm scan range
Accurate chamber positioning (0.1 mm)
Min setup time
Remote control very useful
Data transfer in the right format to computer
Lift table

![](_page_61_Picture_2.jpeg)

# More Equipment

Electrometer & ion chambers

Small water phantom for calibration

Possibly plastic phantom for output measurements

Different thicknesses plastic / solid water

Right cables, thermometer, barometer, reference chamber system, check source

### Detectors need to be:

Sensitive enough

Stable

No leakage

No energy dependence

Good spatial resolution

Linear response

Use the appropriate detector!!! Example: electrons, small fields, EDWs

#### Diodes – careful!

"Before using a diode detector, one should compare it with ion chamber measurements to confirm its operation and actuary in data "TG-106

![](_page_64_Picture_2.jpeg)

# Tank setup

- Verify movements work & electrometer functions
- Heavy!
- Check for water leaks!
- Preferably distilled or de-ionized water
- Position tank so crosshairs are in the center
- Level empty tank
- Fill
- Adjust to correct SSD
- Check level
- Set movement limits

# Caution

Do not store the water in the tank for long periods of time
Do not leave ion chamber in water
Beware of voltage

#### Detectors

- Field and reference chambers
- Choose correct chamber and correct chamber voltage!

![](_page_67_Figure_4.jpeg)

#### Find center of the chamber

![](_page_69_Picture_0.jpeg)

Correct for effective point of measurement of ion chamber!

![](_page_69_Picture_2.jpeg)

# Signal per Gy from various detectors

- Farmer chamber (0.6 cc): 20 nC/Gy
- Marcus chamber (0.02 cc): 0.67 nC/Gy
- PinPoint chamber (0.015 cc): 0.4 nC/Gy
- MicroDiamond(PTW) : 1nC/Gy
- PhotonDiode(PTW): 9 nC/Gy (fs <40x40)
- PhotonDiode SRS: 175 nC/Gy (fs <10x10)

# When measuring:

![](_page_71_Picture_1.jpeg)

- Automate, program sequences to save time
- Save in the correct folder
- Use a reasonable time per measurement to obtain a representative dose measurement
- Use the same equipment and procedures for similar measurements Use a reference chamber




Do a base measurement, e.g. dose at 10 cm depth in a 10x10 field to monitor consistency of the output and measuring system

Be aware of sudden temperature and/or pressure changes

- Depth dose curves
- Dose profiles, also extending to outside the field to check for scatter and jaw transmission
- Various output factors
- Tray, MLC, block transmission
- Wedge data (depth dose, profiles, OF)
- All for various field sizes and energies

Depth dose curves

From bottom up

- Beam profiles
  - Spacing
    - 1 mm in penumbra
    - 2 mm for rest
    - At least 5 cm beyond field if it is used to model jaw transmission
  - In-plane and cross-plane
  - Ensure correct chamber orientation!

Output factors

Total scatter factor = collimator scatter factor x phantom scatter factor

Which one(s) does your TPS need?

Collimator exchange effect? Can be up to 3.5 % or so, ignored in hand calcs

Tray factors

For a variety of field sizes, but usually just one tray factor

Relative measurement – can use plastic phantom

#### Wedges:

- Fixed or EDW?
- Max field size? Which jaw?
  - EDW: min 22 MU, Y only
- Do I need a linear array? Depends on TPS
- Ion chamber direction important!
- Wedge Factor
  - Varies <1.5% for fixed wedge
  - If TPS only allows 1 wedge factor DO NOT USE EDW

# Some TPS require more data

Half field scans might require the tank to be shifted

- Data at different SSDs for TPS modelling
- Diagonal scans
- In-air measurements?

Asymmetric jaws, large field IMRT, MLC, EDW

Measure depth doses continuously or step-by-step? What stepsize?



# VERIFICATION

Data should be checked against an independent sou

BJR-25 Golden Beam data Spot checks by an independent physicist Central Axis Depth Dose Data for Use in Radiotherapy: 1996

#### Measured data - electrons

- CAX depth doses
- Applicator factors

Dose profiles – all applicators, various insert sizes for each

- Virtual source distance
- Output factors
- Various SSDs
- Often electron calculations are done manually

| Cone Size | Field Size | SSD    |
|-----------|------------|--------|
| 6 cm      | 2 cm       | 100 cm |
|           |            | 105 cm |
|           |            | 110 cm |
|           |            | 115 cm |
|           |            | 120 cm |
|           | 3 cm       | 100 cm |
|           |            | 105 cm |
|           |            | 110 cm |
|           |            | 115 cm |
|           |            | 120 cm |



#### Electrons – points to remember

High speed scanning can cause ripples, then the scanning probe sees varying depths



#### Electrons – points to remember

You are measuring ionization curves!

Have to convert PDI to PDD using replacement correction factors and restricted stopping power ratios (both a function of depth) Check if your system does this or if you have to!

### Electrons – small fields?

Rule of thumb: field diameters should be > E/2

# eMC in Eclipse

- For each electron energy
  - Profile in air for no cone
  - PDD in water for no cone
  - Absolute dose in water for no cone
  - PDD in water for each cone
  - Absolute dose in water for each cone



#### Measurements



TRS398

Establish factors for relative dosimetry in smaller or plastic phantom

Remember: NOW is the time to do all the measurements, NOW you have time on the machine! Later it is late nights or weekends only...

# MLC

Replace conventional blocking 3DCRT and more advanced

Be aware:

- Does MLC replace jaws?
- Permanent or add-on?
- MLCs generally travel less than full field of view



 Various tests and checks to be done, test patterns to check leaf position accuracy



# TPS commissioning

Verify model based solution with measurements Documentation!!!

Point dose calculation vs measurement

# Special procedures

TBI TSE SRS IMRT VMAT

. . .





Scan, Plan, Treat a phantom

#### How long does this take?

Depends on a lot of things:
Availability and experience of personnel
Proper instrumentation
Type of accelerator

# Finally, How long will this process take?

- a síngle energy photon machine can be commissioned in about 2-4 weeks
- a multimodality accelerator with two photon energies and several electron energies can take about 6-8 weeks of intensive effort (requiring 16-h shifts)

Commissioning is a long and laborious process, but very necessary. In the end, we don't want any surprises...





# Quality Assurance

On accelerator On MLC On TPS On EPID

. . .

# Linac

Interlocks

Beam status indicators

Laser-crosswire coincidence

ODI

Optical back pointer

Field size indicator

Output constancy

Emergency off

# Linac

Gantry angle readout

- Collimator angle readout
- Couch position readout (vertical, lat & long)
- Couch isocenter
- Couch angle
- Crosswire centering
- Light/Radiation co-incidence

# Linac

TRS398

Beam energy Flatness & Symmetry Radiation isocenter (Winston-Lutz)

Documentation & Records!!!

# MLC

. . .

Leaf position for std template Leaf alignment Leaf leakage / transmission Stability with gantry rotation Alignment with jaws

# EPID

. . .

Mechanical and electrical integrity Collision interlocks Image quality Positioning of the EPID – reproducibility Spatial resolution Noise Distance estimates cf. to true distances



lukeprog.com