# **Fundamental Radiobiology**

### Prof. Arun Chougule, FAMS, FIOMP

Dean and Chief Academic Officer Swasthya kalyan Group, Jaipur, INDIA Chair ETC IOMP Chairman IOMP Accreditation Board Ex. Sr. Professor & Head Ex. Dean, Student Welfare [RUHS] Ex. Dean paramedical Sciences Immediate Past President AFOMP arunchougule11@gmail.com

## **Cancer Treatment Options**



## **RADIOBIOLOGY:**

Radiobiology is a branch of science which combines the basic **principles of physics and biology** and is concerned with the action of ionizing radiation on biological tissues and living organisms.

# LAW OF BERGOINE AND TRIBONDEAU



1906 Bergonie and Tribondeau realized that cells were most sensitive to radiation when they are:



### **Rapidly dividing**

### Undifferentiated

Have a long mitotic future

# CELL RESPONSE TO RADIATION

- LYNPHOCYTES
- SPERMATOGONIA



- OSTEOBLASTS
- SPERMATIDS
- MUSCLE CELL
- NERVE CELL





- DIRECT ACTION :- Radiation directly hit the critical target in the cell, causing ionization or excitation of the target atoms leading to biological change.
- INDIRECT ACTION :- Radiation interacts with other molecules & atoms in the cell, producing free radicals which further damage the critical target.

# **Direct and indirect mechanisms** Indirect Route water radiation free radical DAMAGE DAMAGE radiation

**Direct Route** 

### INDIRECT ACTION- RADIOLYSIS OF WATER

• HOH + e HOH <sup>-</sup>

- HOH \* ------ H \* ----- H \* ------ H \*
- HOH OH + H \*







### SENSITIVITY OF CELL

- Radiation effect depends on the sensitivity of the cell
- Sensitivity of cell depend on cell cycle, i. e. cell is in which phase,
- •G1 phase in which cell grow and become mature.
- S phase ,synthetic phase, in which DNA synthesis, very active phase,
- G2 phase in which cell division occur.
- M phase in which mitotic division occur



- The point that a cell is in the cell cycle has a marked influence on its response and survival of irradiation.
- G1 & G0 are relatively insensitive to radiation injury.
- S phase is generally considered to be the most resistant to radiation injury.

# SENSITIVITY OF CELL PHASES





Relative survivability of cells irradiated in different phases of the cell cycle. Synchronised cells in late G<sub>2</sub> and in mitosis (M) showed greatest sensitivity to cell killing.

### RADIATION ENERGY TRANSFER DETERMINANTS

• Linear Energy Transfer - LET

• Radiobiological Effectiveness – RBE

• Oxygen Enhancement ratio - OER

# Linear energy transfer (LET)

"LET of ionsing radiation in a medium is the quotient dE/dl, where dE is the average energy locally imparted to the medium by a ionising radiation of specified energy in traversing a distance of dl."

# $\label{eq:left} \begin{array}{ll} LET < 10 \ keV \ / \ \mu m & low \ LET \\ LET > 10 \ keV \ / \ \mu m & high \ LET \end{array}$

- 250 kVp X rays: 2 keV/µm.
- Cobalt-60  $\gamma$  rays: 0.3 keV/ $\mu$ m.
- 3 MeV X rays: 0.3 keV/µm.
- 1 MeV electrons: 0.25 keV/ $\mu$ m.
- 10 keV electrons: 2.3 keV/ $\mu$ m.

-14 MeV neutrons: 12 keV/ $\mu$ m.

—Heavy charged particles: 100–200 keV/ $\mu$ m.

-1 keV electrons: 12.3 keV/ $\mu$ m.

#### LOW LET

- GAMMA RAYS
- X-RAYS

• ALPHA PARTICLES

HIGH LET

- IONS OF HEAVY NUCLEI
- CHARGED PARTICLES
- LOW ENERGY NEUTRONS

### **RBE – RELATIVE BIOLOGIC EFFECTIVENESS**

# • RELATIVE CAPABILITIES OF IONSISING RADIATION WITH DIFFERING LETS TO PRODUCE PARTICULAR BIOLOGIC RESPONSE



#### DOSE IN Gy FROM 250 KVP X-RAYS

DOSE IN GY OF TEST RADIATION

Definition of RBE





# RBE

# LET and RBE RELATIONSHIP



# **OER-OXYGEN ENHANCEMENT RATIO**

•THE RATIO OF THE RADIATION DOSE REQUIRED TO CAUSE A PARTICULAR BIOLOGIC RESPONSE OF CELLS OR ORGANISMS IN AN OXYGEN DEPRIVED **ENVIRONMENT TO THE RADIATION DOSE REQUIRED TO CAUSE AN IDENTICAL RESPONSE** UNDER NORMAL OXYGENATED CONDITIONS

 $OER = \frac{Dose \text{ to produce a given effect without oxygen}}{Dose \text{ to produce the same effect with oxygen}}$ 

# Oxygen enhancement ratio (OER)



# LET and OER RELATIONSHIP







#### Relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of various radiation types



RBE represents the biological effectiveness of radiation in the living body. The larger the RBE, the greater the therapeutic effect on the cancer lesion. OER represents the degree of sensitivity of hypoxic cancer cells to radiation. The smaller the OER, the more effective the therapy for intractablecancer cells with low oxygen concentration.

### RBE — QF (QUALITY FACTOR)

#### Biological Responses of cells to ionizing radiation



#### Figure 2. Advances in Radiotherapy: 1900-Present

| Clinical Advances<br>Technologic Advances<br>Biologic Advances                                                                              | Leukemia —<br>cases                                      | -                                                                                | Roentgen adopted as<br>andard exposure unit;                                      | Nobel Prize (Muller                                                             | ) for radiation-indu                                                        | Experimental                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Fractionated radiation sterilizes ran<br>testes without major burns (11,<br>19<br>Collular radi                                             | reported in<br>radiation<br>n's workers (10)<br>12) 1911 | Radiosensitivity                                                                 | radiation protection<br>recommendations<br>1928<br>Head and neck<br>cancers cured | mutagenes<br>First self-sustai<br>chain reaction v                              | is shown in Drosop<br>ning nuclear<br>vith uranium<br>1942                  | 1946 quantification<br>of the oxygen<br>effect (109)<br>1952                                               |
| depends on a<br>activities and<br>differentiation<br>1906                                                                                   | nitotic<br>l levels of<br>on (47)                        | oxygen presence (52)<br>1923<br>How high-energy<br>photons interact              | with fractionated<br>X-rays (13)<br>1928                                          | Plant root<br>of oxygen i<br>1935                                               | studies show impo<br>n radiotherapy (52                                     | 2) units first<br>used (15)<br>1951                                                                        |
| Radiation intensity rela<br>square of distance from<br>1903<br>Becquerel experiences skin burn<br>while carrying radium in vest poc<br>1901 | ted to inverse<br>source<br>Hot-ca<br>ket (109)<br>1913  | with tissue<br>(Compton effect)<br>(109)<br>1922<br>athode x-ray<br>avented (33) | Air wall ionizati<br>accurately<br>measure radiati<br>intensities<br>1924         | Dosage system<br>1934<br>ion chambers<br>ion<br>Cyclotron invented (37)<br>1932 | m for gamma ray (<br>First patient<br>treated with<br>neutron beams<br>1938 | (36)<br>Skin iso-effects<br>governed primarily by<br>total dose and overall<br>treatment time (17)<br>1944 |
| 1900 1905 1                                                                                                                                 | 910 19                                                   | 1  <br>015 1920                                                                  | 1925                                                                              | 1930 1935                                                                       | <br>1940                                                                    | <br>1945 1950                                                                                              |

"Co 26 a

5.26 a

**AACR Centennial Series** 

|                                                                                                                                       | First <i>in vivo</i><br>radiation survival                                                                                                  |                                                                                                                                                                       | Differential radiosensitivities                                                                                                                                                                                                         | s of early vs. late responding tissues (112)                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i i i i i i i i i i i i i i i i i i i                                                                                                 | curve (19)<br>1967                                                                                                                          | Gamma —<br>knife<br>for cranial                                                                                                                                       | Multi-leaf collimators develo                                                                                                                                                                                                           | oped                                                                                                                                                                                                                                   |
| Cellular<br>radiation                                                                                                                 | Remote<br>after-loading                                                                                                                     | radiosurgery<br>1968                                                                                                                                                  | MRI clinically available<br>1980                                                                                                                                                                                                        | Cancer cell survival correlated with tumor<br>control probablility after radiotherapy (21, 22)                                                                                                                                         |
| damage repair<br>shown (109)<br>1959                                                                                                  | in brachytherapy<br>1961 hyj<br>Proton beam                                                                                                 | Metronidazole, the first<br>poxic cell sensitizer (111)<br>1976                                                                                                       | Model suggests metastasis<br>occurs before detection of<br>primary tumors (80)                                                                                                                                                          | 1991<br>Sequence of the human<br>genome completed (117)                                                                                                                                                                                |
| Clonogenic<br>survival<br>curves for<br>irradiated<br>cells (49)<br>1956<br>Hypoxia from<br>limiting oxygen<br>diffusion (53)<br>1955 | treatment adopted<br>(at Harvard/MGH)<br>(45)<br>1961 Hyper<br>radiot<br>1966<br>Differential<br>radiosensitivity<br>demonstrated (<br>1963 | Concept for IMRT (42)<br>1978<br>PET devel<br>1975<br>PET devel<br>1975<br>therapy (110)<br>Tumo<br>First CT scans<br>1972<br>Survival curves for no<br>(109)<br>1971 | 1980<br>Iso-effect formula b<br>components of radii<br>1983<br>Bystander effect<br>first described (1<br>pr potential doubling<br>time (T <sub>Pot</sub> ) (113)<br>1985<br>Nucleotron<br>produces first<br>computer-con<br>afterloader | And the similar outcomes (29–32)<br>fect LDR and HDR brachytherapies have similar outcomes (29–32)<br>1993<br>Continuum or spectrum theory of cancer spread (81)<br>1994<br>trolled SBRT to treat extracranial tumors (27, 28)<br>1995 |
| First patient treated<br>proton beams (at B<br>1954                                                                                   | d with<br>Berkeley) (15)                                                                                                                    | Cancer risk from exposu<br>to X-rays <i>in utero</i> (109)<br>1970                                                                                                    | re<br>Development of IMRT (40) disc<br>1988                                                                                                                                                                                             | ATM gene Microarray technology to study expression<br>of human genes (116)<br>1995 1996                                                                                                                                                |
| 1955 1960                                                                                                                             | 1965                                                                                                                                        | 1970 1975                                                                                                                                                             | 1980 1985 1990                                                                                                                                                                                                                          | 1 I I I<br>0 1995 2000 2005 2010                                                                                                                                                                                                       |

**Cancer Research** 

# Primary aim of radiotherapy

Deliver lethal dose to tumor
Spare normal tissue/ OAR

How to achieve Art/ Science

# Radiobiology: Tumour and normal tissue

- Radiation effect vs. dose
  - sigmoid behaviour
  - stochastic process
- Tumour control lower dose than normal tissue damage
  - Makes radiotherapy possible!
- Radiotherapy goals and research
  - separate two curves







**4Rs OF DOSE FRACTIONATION** 

These are radiobiological mechanisms that impact the response to a fractionated course of radiation therapy

Repair of sublethal damage spares late responding normal tissue preferentially

**Redistribution** of cells in the cell cycle

increases acute and tumor damage, no effect on late responding normal tissue

#### **Repopulation**

spares acute responding normal tissue, no effect on late effects, danger of tumor repopulation

Reoxygenation

increases tumor damage, no effect in normal tissues

5 th R- Radiosensitivity

# 4 R's of radiation biology

- <u>Repair of cellular damage</u>
- <u>R</u>eoxygenation of the tumor
- <u>R</u>edistribution within the cell cycle
- <u>Repopulation of cells</u>

- 5 th R- Radiosensitivity- the response to radiation varies by tumor intrinsic and individual radiosensitivity.
- 6th R "Reactivation of anti-tumor immune response" - RT considerably modifies the immune landscape by affecting immune activation as well as immunosuppressive pathways.

![](_page_37_Figure_7.jpeg)

Time between radiation pulses

![](_page_38_Figure_0.jpeg)

The range of dose rates over which repair, reassortment and repopulation modify radiosensitivity depends upon the speed of these processes.

Steel, G.G., et al., Dose-rate effects and the repair of radiation damage. Radiother Oncol, 5 (1986) 321-331,

The 4 Rs of radiotherapy: Influence on time between fractions, t, and overall treatment time, T

- Reoxygenation
- Redistribution
- Repair
- Repopulation (or Regeneration)

- Need minimum T
- Need minimum t
- Need minimum t for normal tissues
- Need to reduce T for tumour

<u>The 4 Rs of radiotherapy: Influence on time between</u> <u>fractions, t, and overall treatment time, T</u>

![](_page_40_Figure_1.jpeg)

# Time, dose and fractionation

- Need to optimize fractionation schedule for individual circumstances
- Parameters:
  - Total dose
  - Dose per fraction
  - Time between fractions
  - Total treatment time

- The most important lessons that history has taught us are
- There can be no single regimen of treatment delivery that will be appropriate for all tumors in all patients.
- Fractionation cannot be considered in isolation. There is a complex interdependence between
  - Total dose, dose-per-fraction, overall treatment time, treated volume, beam parameters
- Clinical advances precede, and are preceded by, advances in our basic understanding of radiation biology.
- The tolerance of normal tissues to the late effects of radiation limits the dose that can safely be prescribed to the tumor.
- The tolerance dose varies between tissues and is influenced by the proportion of the organ treated, the length of follow-up and the end point assessed.

# **Fractionation Effects** $SF = e^{-n(\alpha d + \beta d^2)}$ $d_0 = 2Gy$ Dose In SF $\mathbf{d} = 1 \mathbf{d}_{0}$ Isoeffect = $d = 2d_0$ Isoeffect = $2Gy \times 6 \neq 4Gy \times 3 \neq 6Gy \times 2$ $4.8Gy \times 1$ $6Gy \times 1$

Single Dose

 $d = 3d_0$ 

Strandqvist (1944)-first scientific approach - related dose with overall treatment time for equivalent biological effect.

![](_page_44_Figure_1.jpeg)

Cohen (1949)-analyzed data of Reisner (1933), Quimby (1937) and Strandqvist (1944).

### Definitions

#### Conventional fractionation

- Daily doses (d) of 1.8 to 2 Gy
- Dose per week of 9 to 10 Gy
- Total dose (D) of 40 to 70 Gy
- Hyperfractionation
  - The number of fractions (N) is increased
  - T is kept the same
  - Dose per fraction (d) less than 1.8 Gy
  - Two or more fractions per day (t)

**Rationale: Spares late responding tissues** 

### Definitions

- Accelerated fractionation
  - Shorter overall treatment time
  - Dose per fraction of 1.8 to 2 Gy
  - More than 10 Gy per week

**Rationale: Overcome accelerated tumor repopulation** 

- Hypofractionation
  - Dose per fraction (d) higher than 2.2 Gy
  - Reduced total number of fractions (N)

Rationale: Tumor has low  $\alpha/\beta$  ratio and there is no therapeutic advantage to be gained with respect to late complications

# **Types of Hypofractionation**

- Hypo fractionation has been further subdivided into two types:
- 1. Moderate hypo fractionation:
  - (2.4 to 4 Gy/fraction for 15-30 fractions) and

# 2. Extreme hypo fractionation (6.5 to 10 Gy/fraction for 4-7 fractions)

#### Conventional

70 Gy - 35 fx - 7 wks

Hyperfractionated

81.6 Gy - 68 fx - 7 wks

54 Gy - 36 fx - 12 days

Very accelerated with reduction of dose

**Moderately accelerated** 

72 Gy - 42 fx - 6 wks

### Fractination in RT

| Fractionation                                                                                      | Typical Fraction Size                                                                        | Typical No. of<br>Fxs   | Pros                                                                                      | Cons                                          |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|
| Conventional                                                                                       | 1.5-2.25 Gy /d                                                                               | 30-40                   | Spare early normal tissue reactions<br>Allow Re-oxygenation & re-<br>assortment in Tumors | Allow surviving Tumor cells<br>to proliferate |
| Hyper Fx (same total dose in same time)                                                            | 1.15-1.8 Gy Bid                                                                              | 60-70                   | Further separate early and late effects                                                   | Patient inconvenience                         |
| Accelerated Fx (same<br>total dose in less time)<br>•Continuous Hyper Fx<br>Accelerated RT (CHART) | 1.5-2.25 Gy bid<br>(could include a break)<br>1.4-1.5 Gy tid separated by<br>atleast 4-6 hrs | 30-40<br>36 Fxs/12 days | Shorter time, reduces re-<br>population of Tumor cells<br>No change in late effects       | Increase in acute effects                     |
| •Hypo Fx<br>•HF-SRT, SBRT<br>•SRS                                                                  | 2.5-3 Gy<br>4-6 Gy<br>>8Gy                                                                   | 15-20<br>6-10<br>1-5    | Reduced Treatment time,<br>convenient<br>Better efficacy with Hypoxic cells.              | Increase Late effects                         |

#### Fractionation sensitivity of different tumours in the clinical setting

| Tumor<br>fractionation<br>sensitivity | Definition                                                                                             | Optimal fractionation schedule                            | Types offumor                | Reference                                                                                          |
|---------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------|
| Low                                   | <u>α/β ratio of tumor</u><br><u>higher</u> than that of<br>late responding<br>healthy tissues          | More, smaller-sized fr.<br>with higher total dose,        | head and neck<br>and lung ca | Nguyen et al.,2002<br>Overgaard et al., 2003<br>Saunders et al., 1999                              |
| Moderate to<br>high                   | α/β ratio of tumor<br>similar or slightly<br>higher than that of<br>late responding<br>healthy tissues | Fewer, larger-sized<br>fractions might achieve<br>same LC | BREAST CA                    | Yarnold et al., 2005<br>Owen et al., 2006<br>Whelan et al., 2002<br>START A, 2008<br>START B, 2008 |
| High                                  | α/β ratio of tumor<br>lower than that of late<br>responding healthy<br>tissues                         | <u>Fewer, larger-sized fr-&gt; improve</u><br><u>LC</u>   | prostate ca                  | Fowler, 2005                                                                                       |

#### Hypoxia and Local Tumor Control

![](_page_51_Figure_1.jpeg)

- Local tumor control correlates with pretreatment oxygen levels in head and neck ca., as measured with an Eppendorf electrode. Tumors were stratified by whether the fraction of pO2 values less than 2.5 mm Hg was above or below the median (15%). 66-68 Gy was given in 33-34 Fx.
- Nordsmark et al Radiother Oncol 41, 31, 1996

#### Tumor Hypoxia and DFS

- DFS in cervix ca depends on  $pO_2$ , irrespective of type of treatment, surgery/RT. Hockel et al, Sem. Radiat. Oncol. 6:30, 1996.
- This suggests that hypoxia is linked to tumor aggression

![](_page_52_Figure_3.jpeg)

#### Disease-free survival probability

# Summary

Radiosensitivity depends on many intrinsic and extrinsic factors Intrinsic factors

Cell type Cell division phase Repair, repopulation, reoxygenation, redistribution capabilities Proliferative potential Oxygen supply, vascularity, Metabolism Host cell infiltrates, Interstitial pressure Genetic composition- Oncogenes, Tumor suppressor genes

### **Extrinsic factors**

Total dose

Time , dose rate, fraction size, type of radiation, volume

# Questions ?