

SERVIZIO SANITARIO REGIONALE **EMILIA-ROMAGNA** Azienda Ospedaliero - Universitaria di Modena

180

Gabriele Guidi Az. Ospedaliero-Universitaria di Modena Guidi.Gabriele@aou.mo.it Phone: +39 059 422 5699

QUALITY ASSURANCE (QA)

Quality assurance (QA)

- Quality assurance
- Quality system
- Quality standards
- Quality controls

Quality assurance in Radiotherapy

- Guidelines
- Medical Device QA
- Non-Medical Device QA
- Patients QA
- Present and future of RT QC
- Tests: frequency and tolerances
- Tools and other QA programs

Today I will not provide specific QA methods and tests... You should find (define) the tests and methods adequate and appropriate for your center, experiences, technologies and available tools ...look at the problems and guidelines!

QUALITY ASSURANCE (QA)

QUALITY ASSURANCE (QA) – Sample Guidelines

4

....

Image: Second Second

QUALITY ASSURANCE (QA) – Sample Guidelines

Publications advanced search

IAEA scientific and technical publications can be searched by multiple parameters: year of publication, topic and type. Use the facets to input your search criteria or the text field to search by title, keyword, ISBN, ISSN or series number.

Please, refer to recognized and registered international agencies and associations, not to occasional websites

Safety Reports Series

IAEA TRS-398

Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water

Pedro Andreo, Dosimetry and Medical Radiation Physics Section, IAEA David T Burns, Bureau International des Polds et Measures (BIPM) Khus Hohlfeld, Physikalisch-Technische Bundessnath (PTB), Bramschweig, Germany M Safial Hua, Thomas Jefferson University, Philadelphia, USA Tatunait Kanai, National Institute of Radiological Sciences (NRS), Chiba, Japan Fedele Latano, Ente per le Nuove Tecnologie L'Energia e L'Ambiente (ENEA), Rome, Italy Vere Smyth, National Radiation Laboratory (NRL), Christchurch, New Zealand Stefan Vynckfer, Catholic University of Louvain (UCL), Brusse, Belgium

PUBLISHED BY THE IAEA ON BEHALF OF IAEA, WHO, PAHO, AND ESTRO

INTERNATIONAL ATOMIC ENERGY AGENCY IAEA

Organize and Track the documentation

Possible definition (ISO Source):

A **Quality Management System** is a set of all connected and interdependent activities that influence the Quality of a product or service. Documents the processes, procedures and responsibilities for achieving quality policies and quality objectives.

The Quality Management System consists of:

- An organizational structure
- The processes
- Responsibilities
- The procedure
- Resources
- People who know what to do
- People who know how to do it
- People who have the means to do it
- People motivate to do it because they have a common goal

QA SYSTEMS AND STANDARD It's not just paper and operating instructions

QA PROGRAMME National or Local Regulatory, Quality System, Certification and Tools. (Examples)

E.g. Requirements in Italy and Emilia Romagna......

n.332 del 13.12.2017 periodico (Parte Seconda)

Regione Emilia-Romagna

DELIBERAZIONE DELLA GIUNTA REGIONALE 4 DICEMBRE 2017, N. 1943

Approvazione requisiti generali e procedure per il rinnovo dell'accreditamento delle strutture sanitarie

LA GIUNTA DELLA REGIONE EMILIA-ROMAGNA

Requisiti specifici Fisica sanitaria

Estratto dalla delibera Giunta regionale n. 327 del 23 febbraio 2004 "Applicazione della L.R. n. 34/98 in materia di autorizzazione e di accreditamento istituzionale delle strutture sanitarie e dei professionisti alla luce dell'evoluzione del quadro normativo nazionale. Revoca di precedenti provvedimenti"

Requisiti specifici per l'accreditamento delle Strutture di fisica sanitaria

Example of an Organizational Model (i.e. Medical & Health Physics Service for radiotherapy)

ISO 9001 | Quality Management System | PDCA

Source ISO 9001:2015

Workflow, Processes, Sub-processes and Procedures

.........

G. Guidi – 2023 ICTP. School on Medical Physics for Radiation Therapy: Dosimetry, Treatment Planning and Delivery for Advanced Applications

Documentation tracking (example)

SETUP QA PROGRAMME AND DO IT!!

Setting Up a Radiotherapy Programme:

Clinical, Medical Physics, Radiation Protection and Safety Aspects

Storia dei Linac – Gantry tipo C-Arm

Disponibilità commerciale

RADIOTHERAPY ... ROADMAP

Radiotherapy Network & Facility

......

Network and Imaging

....

Treatment Planning Systems (Example)

Radiotherapy Network and Facility

AI – HPC Research

Monaco

Oncentra-Brachy

MyQA &

PerFraction

Raystation

Planning and QA systems

- Multimodality Imaging
- IVDT (Density table vs. HU)
 - MRI calculation capability
 - Density override
- Quantitative imaging
 - PET, SUV, etc..
- Contouring
 - Manual
 - Automatic
 - Model Based
- Co-Registration
 - Rigid (MI, CC)
 - Deformable registration
 - Dose Accumulation
- Physics Modeling
- Algorithm (CCC or Monte Carlo)
- Planning (photon, electron, etc..)
- Reconstruction (DRR, Synthetic, ecc..)
- DVH, Report and QA
- Connectivity (DICOM, DICOMRT, R&V)
- Artificial Intelligence
 - Machine Learning
 - Deep Learning)
- Auto Planning, Adaptive RT Modules
- Radiobiology
- Cybersecurity and AI

Cybersecurity for AI

- Ransomware Impacting Healthcare
- Healthcare Industry Victimization by Ransomware
- Data Leak Trends
- Cyber Attack of Health System
- New Ransomware Capabilities
- Mitigations

AI for Cybersecurity

- Mitigations
- Machine Learning
- Network Scanning
- AI based Anomaly Detection
- ...ask to your IT or Cybersecurity department...
- Know what we must do or avoid
- Know the problems and risks

LINAC and On-Board Imaging (i.e. example)

Radiotherapy Network and Facility

Hub Hospital Treatment Machine

- LINAC QA
 - Geometry and mechanical
 - Energy (FF/FFF) and Dosimetric
 - Inter/interleafs
 - MLC Interdigitation
 - Doserate
 - Gantry rotation speed
 - Safety and collision
 - Couch (Robotic and 6° freedom)
 - Complete procedure after interruption
 - TBI (Non-Standard conditions)
 - VMAT, IMRT, dMLC, 3DCRT
 - MLC Interdigitation
 - Leafs speed
 - Penumbra
 - CBCT/EPID/MVCT
 - Image Quality
 - Contrast/Uniformity
 - Bad Pixel Map
 - Image Density (IVDT)
 - Spatial resolutions
 - Geometric
 - Accuracy
 - Reconstructions
 - TBI imaging
 - Vivo Dosimetry

- Radiosurgery, SBRT
 - Positioning (frame vs. frameless)
 - Accuracy
 - Rotational of gantry and collimator
- TBI (Total Body Irradiation)
 - Instruments and device
 - Vivo Dosimetry and device
 - Delivery (Non-Standard conditions)
- Non-Homogeneity condition
 - Cerrobend Tray
 - Real-time monitor systems
- Non-medical device
 - Instruments
 - Barometers
 - IOS R&V
 - Monitors
 - Safety (Camera and Door Interlock)

Remote Site

Radiotherapy Network and Facility

........

(Remote site) Hospital Treatment Machine

- Complete overview of the data from the Hub
- Equal QA Program
- Equal accuracy and frequency <u>Remote sites are not treating patients B!</u>!

Issues to evaluate to have same performance

	Region	Homogenous, simple geometry	Complex geometry (wedge, inhomogeneity, asymmetry, blocks / MLC)	More complex geometries****
δ	Central beam axis data - high high dose, low dose gradient	2%	3%	4%
δ ₂ *	Build-up region of central axis beam, penumbra ragion of the profiles - high dose, high dose gradient	2 mm or 10%	3 mm or 15%	3 mm or 15%
δ3	Outside central beam axis region - high dose, low dose gradient	3%	3%	4%
δ4**	Outside beam edges - low dose, low dose gradient	30% (3%)	40% (4%)	50% (5%)
RW50 ***	Radiological width - high dose, high dose gradient.	2 mm or 1%	2 mm or 1%	2 mm or 1%
δ ₅₀₋₉₀	Beam fringe – high dose, high dose gradient	2 mm	3 mm	3 mm

Guidi - Maffei (Medical Physics Dpt.) Project: McH2010, GR-2010-2318757 Az. Ospedaliero Universitaria - Modena

..........

Treatment Planning Systems (Example Guideline)

- AAPM Report No. 62: Quality Assurance for Clinical Radiotherapy Treatment Planning (December 1998)
- Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning (2007)
- IAEA Technical Report Series No. 430 : Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer (October 2004)
- IAEA TEC-DOC No 1540: Specification for Acceptance Testing of Radiotherapy Treatment Planning Systems
- IAEA TEC-DOC No.1583: Report of the Coordinated Research Project on Development of Procedures for Quality Assurance of Dosimetry Calculations in Radiotherapy

Physics Modeling (Beware of the Gold Models or pre-commissioned factory data)

Modeling of the measures (Theory vs. Practice)

....

Effect of shifting depth-ionization data measured with cylindrical chambers upstream by 0.6 r_{cav} for photon beams and 0.5 r_{cav} for electron beams (with $r_{cav} = 1.0$ cm). For the electron beams, (b), further corrections are applied to obtain the %dd(x) curve shown.

SCATTER KERNEL

....

Figure 8.2

The summation of dose contribution from various scatter kernels, K. (a) Beam kernel, (b) Slab kernel, (c) Pencil beam kernel, (d) Point kernel. [Adapted with permission from reference [12].]

c) Pencil

d) Point

Fluence vs. Dose (Water vs. Inhomogeneous)

.........

......

Dose profiles (High/Low dose range)

Using a threshold of dose related to the Maximum dose = 5%

- Though of little relevance, the low dose area still might be modeled more accurately in the physics model
- The gradient appears to be calculated and delivered correctly even for high doses and small volumes (SRS/SBRT conditions)
- A Threshold of 5% is certainly very conservative, in the relevant dose ranges, dosimetry results are excellent when previously discussed planning strategies are followed

Only minor dose distribution differences for different dose grids

Planning (0.5 cm dose grid) vs. Final Plan Recalculated (0.3 cm dose grid)

Might you do not appreciate by the DVH where is localized the dose difference? Faster does not mean necessarily accurate.

LINAC QA and Guideline (i.e. AAPM, IEC, IAEA)

Task Group 142 report: Quality assurance of medical accelerators^{a)}

Received: 9 February 2021 Revised: 16 March 2021 Accepted: 28 April 2021

DOI: 10.1002/mp.14992

AAPM SCIENTIFIC REPORT

MEDICAL PHYSICS

AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators

Joseph Hanley¹ | Sean Dresser² | William Simon³ | Ryan Flynn⁴ | Eric E. Klein⁵ | Daniel Letourneau⁶ | Chihray Liu⁷ | Fang-Fang Yin⁸ | Bijan Arjomandy⁹ | Lijun Ma¹⁰ | Francisco Aguirre¹¹ | Jimmy Jones¹² | John Bayouth¹³ | Todd Holmes¹⁴

 Received: 6 May 2022
 Revised: 22 September 2022
 Accepted: 28 November 2022

 DOI: 10.1002/mp.16150
 Control of the section o

AAPM SCIENTIFIC REPORT

MEDICAL PHYSICS

AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148

 Quan Chen¹
 Yi Rong²
 Jay W. Burmeister^{3,4}
 Edward H. Chao⁵

 Nathan A. Corradini⁶
 David S. Followill⁷
 X. Allen Li⁸
 An Liu⁹

 X. Sharon Qi¹⁰
 Hairong Shi¹¹
 Jennifer B. Smilowitz¹²

i.e. LINAC QA

CQ-ACCELERATORI LINEARI LINAC

1. CON	TROLLI GIORNALIERI	5
1.1.	DOSIMETRICI	5
1.1.1.	Controllo dell'output per fotoni ed elettroni	5
1.2.	MECCANICI	ŝ
1.2.1.	Localizzazione dei laser ed indicatore di distanza (Telemetro)6	ŝ
1.2.2.	Indicatore dimensioni collimatore	7
1.3. 5	SICUREZZA	7
1.3.1.	Verifica del funzionamento delle sicurezze elettriche e meccaniche	7
1.3.2.	Interlock interruzione erogazione per l'apertura della porta del bunker	7
1.3.3.	Sicurezza sulla chiusura della porta	7
1.3.4.	Sistemi audiovisivi	7
1.3.4.1.	Interfono	7
1.3.4.2.	Monitor	7
1.3.5.	Verifica dei dispositivi di avvertimento	7
1.3.5.1.	Acustici	7
1.3.5.2.	Luminosi	7
1.3.6.	Dispositivi di verifica specifici: SIEMENS – PRIMUS	7
1.3.6.1.	Spia verde di RESET che segnala il vuoto	7
1.3.6.2.	Spie gialle del modulatore	7
1.3.6.3.	Spie verdi di alimentazione	3
1.3.6.4.	Livello dell'acqua	3
1.3.6.5.	Pressione dell'acqua	3
1.3.6.6.	Temperatura	3
1.3.6.7.	Pressione del gas	3
1.3.6.8.	Spia verde che indica la purezza del filtro	3
1.3.6.9.	Spie verdi di camera monitor e vacuum power	3
1.3.6.10	 Spia verde del filamento 	3
1.3.6.11	 Spie rosse dell'elettromagnete e del magnete di deflessione	3
1.4. I	MAGING	3
1.4.1.	Posizionamento e riposizionamento	3
2. CON	TROLLI SETTIMANALI)
2.1.	DOSIMETRICI)
2.1.1.	Controllo dell'output per gli elettroni)
2.2.	MLC)
2.2.1.	Picket Fence test)
3. CON	TROLLI MENSILI)
3.1. DO	SIMETRICI)
3.1.1.	Controllo dell'output per i fotoni10)
3.1.2.	Controllo dell'output per gli elettroni10)
3.1.3.	Costanza del Dose Rate	L
3.1.4.	Costanza del profilo dei fotoni11	L
3.1.5.	Costanza del profilo degli elettroni12	2
3.1.6.	Costanza dell'energia dei fotoni e degli elettroni	3
3.1.7.	Filtri dinamici Controllo Wedge factor	3

3.2. ME	CCANICI	13
3.2.1.	Centratura croce di campo (posizione dell'isocentro meccanico)	13
3.2.1.1.	Distanza Laser/telemetro/check pointer	13
3.2.1.2.	Indicatore angoli collimatore	14
3.2.1.3.	Indicatori posizione del lettino	14
3.2.2.	Coincidenza Luce/Campo radiante	14
3.2.3.	Indicatori posizione collimatori e verifica coincidenza luce/raggi (asimmetrici)	16
3.3. ML	C	19
3.3.1.	Controllo MLC	19
3.3.2.	Setting dei collimatori/lamelle (da effettuare solo su acceleratori ELEKTA)	19
3.3.3.	Picket fence test (0°, 90°, 180°, 270°)	19
3.4. IM	AGING	19
3.4.1.	Risoluzione spaziale, contrasto, rumore e scaling	19
4. SEME	STRALI	20
4.1. DO	SIMETRICI	20
4.1.1.	Accessori TBI (diodi)	20
5. ANNI	JALI	20
5.1. Pre	messe sull'utilizzo della strumentazione	20
5.2. Mis	ure Relative	20
5.3. Mis	ure assolute	21
5.4. Equ	ilibrio delle camere di ionizzazione	21
5.5. DO	SIMETRICI	21
5.5.1.	Dimensione del campo, flatness e simmetria per i fotoni	21
5.5.2.	Flatness e simmetria per gli elettroni	23
5.5.3.	Calibrazione output fotoni ed elettroni (IAEA TRS-398)	24
5.5.4.	Output factors fotoni con e senza filtro	25
5.5.5.	Output factors elettroni	25
5.5.6.	Qualità del fascio fotoni (PDD ₁₀ o TPR ²⁰ ₁₀)	25
5.5.7.	Qualità del fascio di elettroni (R ₈₀ e/o R ₅₀)	26
5.5.8.	Linearità Monitor Units fotoni	27
5.5.9.	Linearità Monitor Units Elettroni	27
5.5.10.	Costanza output fotoni vs. dose rate	28
5.5.11.	Costanza output elettroni vs. Dose rate	28
5.5.12.	Controllo angolo dei filtri universali (Elekta)	28
5.5.13.	Costanza output fotoni vs. angolo Gantry	28
5.5.14.	Costanza output elettroni vs. angolo Gantry	29
5.5.15.	Costanza output fotoni ed elettroni off axis vs. Gantry	29
5.5.16.	Costanza TPR ²⁰ 10 in condizioni TBI	29
5.5.17.	Calibrazione output TBI	29
5.6. ME	CCANICI	29
5.6.1.	Rotazione isocentrica collimatore	29
5.6.2.	Rotazione isocentrica Gantry	30
5.6.3.	Rotazione isocentrica lettino	30
5.6.4.	Sag lettino	31
5./. ML	U	31
5.7.1.	I rasmissione MLC intra e inter lamelle	31
6. labe	ile Riassuntive dei limiti di accettabilita	32

Define QA, frequency, tolerance, timing and personnel ...

TABLE IV Time, staffing, and equipment requirements for annual QA.

Procedure	Tolerance Non-IMRT/IMRT/SRS	Typical measuring device	Time required (range)	Personnel
Dosimetry				
Photon Elatness Change from Baseline	+1%	Large water tank	60-120 min	OMP
Photon Symmetry Change from Baseline	+1%	Large water tank	60–120 min	OMP
Electron Elatness Change from Baseline	+1%	Large water tank	60–120 min	OMP
Electron Symmetry Change from Baseline	+1%	Large water tank	60_120 min	OMP
Photon/Electron Output Calibration ³⁸	± 1% (Absolute)	Small/large water tank. ADCL Calibrated Ionization Chamber/ Electrometer	120–180 min	QMP
Spot Check of Field Size-Dependent Output Factors for Photon (2 or more field sizes)	±2% for field sizes < 4 × 4 cm ² ; ±1% for field sizes ≥ 4 × 4 cm ²	lonization Chamber/ Electrometer, solid phantom or water phantom	30–60 min	QMP
Output Factors for Electron Applicators (spot check of one applicator/energy)	± 2% from baseline	Ionization Chamber/ Electrometer, solid phantom or water phantom	60–90 min	QMP
Photon Beam Quality (PDD ₁₀ or TMR _{20:10})	± 1% from baseline	Large water tank	30-60 min	QMP
Electron Beam Quality (R _{sp})	±1mm	Large water tank	60–90 min	QMP
Physical Wedge Transmission Factor constancy	± 2%	Ionization Chamber/ Electrometer, solid phantom or water phantom	30–60 min	QMP
Photon Monitor Unit Linearity (Output Constancy)	± 2% ≥ 5 MU ± 5% (2–4) MU, ± 2% ≥ 5 MU ± 5% (2–4) MU, ± 2% ≥ 5 MU	lonization Chamber/ Electrometer, solid phantom or water phantom	30–60 min	QMP
Electron Monitor Unit Linearity (Output Constancy)	± 2% ≥ 5 MU	Ionization Chamber/ Electrometer, solid phantom or water phantom	30–60 min	QMP
Photon Output Constancy vs Dose Rate	± 2% from clinical dose rate	Ionization Chamber/ Electrometer, solid phantom or water phantom	30–60 min	QMP
Photon Output Constancy vs Gantry Angle	± 1% of the value acquired at gantry 0	lonization Chamber/ Electrometer. 2D/3-D Diode array	30–90 min	QMP

TABLE VII Time/Staffing/Equipment requirements for Imaging QA.

Procedure	Tolerance Non-SRS/SBRT SRS/ SBRT	Typical measuring device	Time required (range)	Personnel
Daily				
Planar kV and MV (EPID) im	aging			
Collision interlocks	Functional	NA	5 min	RTT
Positioning/repositioning	≤2 mm / ≤2 mm/≤1 mm day of SRS	Phantom containing radiopaque markers.	10–15 min	RTT
Imaging and treatment coordinate coincidence	≤2 mm / ≤2 mm/≤1 mm day of SRS	Phantom containing radiopaque markers.	Included above.	RTT
Cone beam CT (kV and MV)				
Collision interlocks	Functional	NA	5 min	RTT
Positioning/repositioning	≤2 mm / ≤2 mm/≤1 mm day of SRS	Phantom containing radiopaque markers.	10–15 min	RTT
Imaging and treatment coordinate coincidence	≤2 mm / ≤2 mm/≤1 mm day of SRS	Phantom containing radiopaque markers.	Included above.	RTT
Monthly Planar MV imaging (EPID)				
Imaging and treatment coordinate coincidence	≤2 mm / ≤1 mm	Phantom containing radiopaque markers.	15–20 min	QMP or Designee
Scaling	≤2 mm / ≤1 mm	Object of known dimensions	5 min	QMP or Designee
Spatial resolution	≥Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Contrast	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Uniformity and noise	≥Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Planar kV imaging				
Imaging and treatment coordinate coincidence	≤2 mm / ≤1 mm	Phantom containing radiopaque markers.	15–20 min	QMP or Designee
Scaling	≤2 mm / ≤1 mm	Object of known dimensions	5 min	QMP or Designee
Spatial resolution	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Contrast	≥Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Uniformity and noise	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
Cone beam CT (kV and MV)				
Geometric distortion	≤2 mm / ≤1 mm	phantom of known and dimensions	15–20 min	QMP or Designee
Spatial resolution	≥ Baseline	Object of known dimensions	5 min	QMP or Designee
Contrast	≥ Baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee
HU constancy	± 40 HU from baseline	Manufacturer supplied test phantom	5–10 min	QMP or Designee

Beam Matching – No.4 LINAC (6,10,15 MV FF and FFF)

G. Guidi – 2023 ICTP. School on Medical Physics for Radiation Therapy: Dosimetry, Treatment Planning and Delivery for Advanced Applications

IMAGING QA

HU constancy

Uniformity and noise

		Application-ty	pe tolerance
Procedure		non-SRS/SBR	SRS/SBRT
1	Daily ^a		
Planar kV and MV (EPID) imaging			
Collision interlocks		Functional	Functional
Positioning/repositioning		:≤2 mm	≤1 mm
Imaging and treatment coordinate coincidence (single gantry angle)		≤2 mm	≤1 mm
Cone-beam CT (kV and MV)			
Collision interlocks		Functional	Functiona
Imaging and treatment coordinate coincidence		≤2 mm	≤1 mm
Positioning/repositioning		≤1 mm	≤1 mm
M	lonthly		
Planar MV imaging (EPID)			
Imaging and treatment coordinate coincidence (four cardinal angles)		≤2 mm	≤l mm
Scaling ^b		≤2 mm	≤2 mm
Spatial resolution		Baseline ^c	Baseline
Contrast		Baseline	Baseline
Uniformity and noise		Baseline	Baseline
Planar kV imaging ^d			
Imaging and treatment coordinate coincidence (four cardinal angles)		sĩ2 mm	≤l mm
Scaling		≤2 mm	≤1 mm
Spatial resolution		Baseline	Baseline
Contrast		Baseline	Baseline
Uniformity and noise		Baseline	Baseline
Cone-beam CT (kV and MV)			
Geometric distortion		≤2 mm	≤1 mm
Spatial resolution		Baseline	Baseline
Contrast		Baseline	Baseline

We are doing daily imaging of the patients for setup and Adaptive RT purposes. Which is the best QA frequency and tolerance? What are you planning with the next generation of Hybrid-Machine?

Annual (A)

Baseline

Baseline

Baseline

Baseline

Planar MV imaging (EPID)			
Full range of travel SDD	±5 mm Barolina	±5 mm Baralina	-
Planar kV imaging	1745CTIAL	Dascinic	
Beam quality/energy	Baseline	Baseline	
Imaging dose	Baseline	Baseline	
Cone-beam CT (kV and MV)			
Imaging dose	Baseline	Baseline	

SOMETIME OBJECTS AND PHANTOM CAN HELP THE WORK-LIFE

IOP Publishing Institute of Physics and Engineering in Medicine

Phys. Med. Biol. 61 (2016) L29-L37

Physics in Medicine & Biology doi:10.1088/0031-9165/61/17/L29

Fast Track Communication

Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging

Light field/ radiation alignment	Symmetric beams	Center shift X (mm)	Center shift Y (mm)	Width difference (mm)	Height difference (mm)
Auto	5×5 cm	-0.02 ± 0.05	0.68 ± 0.11	-0.58 ± 0.05	-0.59 ± 0.09
Auto	10×10 cm	-0.21 ± 0.07	0.96 ± 0.12	-0.63 ± 0.15	-0.94 ± 0.31
FC-2	15 × 15 cm	-0.19	0.40	-0.30	0.00
	Asymmetric beams		Difference in	position (mm)	
	(X1, X2, Y1, Y2)	XI	X2	YI	Y2
Auto	(-3, 4, -3, 4) (cm)	0.23 ± 0.03	-0.39 ± 0.05	-0.26 ± 0.06	-0.95 ± 0.07
Jaw position indicators	Symmetric beams	Width Difference (mm)	Height Difference (mm)	
Auto	5 × 5 cm	-0.76 ± 0.02	-1.73 ± 0.06		
Auto	10×10 cm	-0.46 ± 0.16	-1.71 ± 0.19		
Iso-align	5×5 cm	0.0	-2.0		
Iso-align	10×10 cm	0.0	-2.0		
	Asymmetric beams		Difference in	position (mm)	
	(X1, X2, Y1, Y2)	XI	X2	YI	Y2
Auto	(-3, 4, -3, 4) (cm)	0.06 ± 0.06	0.80 ± 0.03	1.40 ± 0.16	0.63 ± 0.21
Iso-align	(-5, 2.5, -5, -2.5) (cm)	0.0	1.0	1.0	1.0
Cross-hair centering	Center shift X (mm)	Center shift Y (mm)	Walkout (mm)		
Auto	-0.35 ± 0.03	0.77 ± 0.01	0.87 ± 0.12		
FC-2/Iso-align	-0.25	0.67	0.5		
Couch position	Shifts (lat., long.) (mm)	Lat. (mm)	Long. (mm)		
Auto	(30, 30)	30.17 ± 0.25	30.22 ± 0.15		
Ruler	(200, 300)	200.3	300.4		
Laser localization (relative to cross hairs)	Center shift X (mm)	Center shift Y (mm)			
Auto	$0.19 \pm .30$	-0.26 ± 0.13			
Iso-align	0.25	-0.25			

IMAGING QA (forgot something?)

Dicom or Non-Dicom monitor for Adaptive RT? Frequently are provided TV Conversions, instead medical device monitor Might the non-medical devices could hide some unexpected issues

Surface tracking, robotic couch and LINAC and Imaging device isocenter should be aligned.

US (Ultrasound device) Spatial alignment, repositioning and image quality

Calibration of the Output after the Upgrade

Relative variations were compliant with the machine specification requirements, but asymmetrical along the profile. Absolute dose was therefore more asymmetrical than expected (2Gy)

Accurate recalibration, always within Service Engineering requirements, improves dosimetrical results

Software, 3rd Part device, Brachytherapy, Other systems (i.e. example)

Radiotherapy Network and Facility

Hub Hospital

Treatment Machine

- 4D Radiation-Therapy
 - Breath synch
 - Beam on/off and delivery (DIBH)
 - Ramp-up of the beam-on
 - Surface tracking systems
- Complete procedure after interruption
 - 3DCRT
 - IMRT, dMLC or Sliding Windows
 - VMAT
 - Radiosurgery, SBRT
- Isocenter junction
 - Junction of the beam and divergence
- Log files connectivity and Software analysis
- Unpredictable cases (near missing or errors)
- Connectivity with IOS
-radiation therapy

- Brachytherapy
 - Delivery Systems
 - Positioning and accuracy
 - Source calibration
 - Applicator reconstruction
 - Instruments
 - CT/MR compatibility
 - CT/MR Calculations
 - Registration, Contouring
 - Dose Accumulation
 - Safety and Interlocks
 - Monitor
 - Vivo Dosimetry

G. Guidi – 2023 ICTP. School on Medical Physics for Radiation Therapy: Dosimetry, Treatment Planning and Delivery for Advanced Applications

DEFINE THE BASELINE AND REPEAT FREQUENTLY (AS LOW AS REASONABLE) THE QA TEST

i.e. Isocenter and MLC position (Picket, Fence) Tests

QA on practice – Setting a baseline and comparing trends

TBI-Arc (Total Body Irradiation)

Total Body Irradiation – Introduction

Clinical RT Techniques

- **3D-CRT:** Direct radiation beams to conform the shape of the target.
- **IMRT:** Manipulation of beam to conform the target by varying intensities.
- **IGRT:** Incorporation of imaging techniques during treatment session.
- **VMAT:** Delivery of Radiation from a continuous rotation of the source.

Gutierrez, Maria Victoria

TBI QA Programme

Quality Assurance Programme

Human resources handle with the assigned tasks.

Gutierrez, Maria Victoria

TBI QA Programme (Vivo Dosimetry)

- -

Object	Parameter to control	Modality of the control
LINAC or telecobalt	Dose	Control of constancy
Personalize beam mcdlifiers (protection, shields, compensators, bolus)	Attenuation of the shields Cronsistency of compensators and bolus	Dosimetric measures
Positioning devices	Geometric parameters (distance from the source, height from the pavement etc.)	Metric control
In vivo dosimetry	Sensitivity	Calibration in terms of absorbed dose or control relative to the response
Basic dosimetriy	Dose in standard phantom at reference depth	Audit or external confrontation in TBIconditions; calibration according to international protocols
LINAC or telecobalt	OAR profiles	Dosimetric measures in standard phantom in TBI condition
LINAC or telecobalt	PDD or TPR	Dosimetric measures in standard phantom in TBI condition
Treatment planning system (TPS)	Dose in anthropomorhic phantom with lung type inhomogeneity: absolute values and dose distribution.	Dosimetric measures in TBI condition
In vivo dosimetry system	Entrance and exit dose and algorithm of calculation at half thickness	Dosimetric measures in TBI condition

.........

.........

...i.e. QA FOR TREATMENT MACHINE USING EPID

Table 2

List of key references on non-transmission based dose verification methods

Verification procedure	Type of verification	Key references	Objective of verification or subject of the study
QA of treatment machine	QA	Prisciandaro [93]	Radiation-light field congruence
	QA	Dirkx [52,53], Budgell [80,87]	Linac output, beam profile flatness and symmetry
	QA	Baker [84], Yang [95], Samant [96], Parent [97]	MLC leaf position for step-and-shoot fields
	QA	Vieira [86]	MLC leaf position and absolute output for low MU segmented fields
	QA	Vieira [98], Partridge [99], Chang [88]	MLC leaf position during dynamic treatment

How do you support a No-Coplanar beam using EPID/CBCT? Why do we not support the transit dosimetry for those patients?

Table 4

Overview of the various errors that can be detected with EPID dosimetry

Potential errors	Pre-treatment	verification			Treatmen	nt verificatio	n	
	2D/3D	2D		3D	2D			3D
	No phantom	Behind phantom	Inside phantom	Inside phantom	Before patient	Behind patient	Inside patient	Inside patient
Machine								
Wedge presence and direction	Yes (systemati	ic errors)			Yes (syst	ematic and r	andom errors)	
Presence of segment	Yes (systemati	ic errors)			Yes (syst	ematic and r	andom errors)	
MLC leaf position/speed	Yes (systemati	ic errors)			Yes (syst	ematic and r	andom errors)	
Leaf sequencing	Yes (systemati	ic errors)			Yes (syst	ematic and r	andom errors)	
Collimator angle	Yes (systemati	ic errors)			Yes (syst	ematic and r	andom errors)	
Beam flatness and symmetry	Yes (systemati	ic errors)			Yes (syste	ematic and r	andom errors)	
Linac output during treatment	No				Yes			
Gantry angle	No	Possible	Possible	Possible	No	Possible	Possible	Possible
Plan								
Transmission through leaves	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Steep dose gradients	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TPS modelling parameters for MLC	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Delivery of wrong patient	Yes (if same p	lan is used fo	or verification	and	Yes	Yes	Yes	Yes
plan	treatment)							
Dose calculation in phantom or patient	No	No	Yes	Yes	No	No	Yes	Yes

...DURING THE COMMISSIONING YOU NEED TO VERIFY THE TOLERANCE.... AND DEFINE THE FUTURE BASELINE

The NCS report has been downloaded on 29 Mar 2017

.........

ogo n	i sure eseguite c	on 2DArray in Solido (RW3) e Octavius					Local dose	Selected dose	Selected dose
							%	%	Dose prescriz. (Gy)
		TPS	Tecnica	Fantoccio	Piano	N°Fascio/Gantry Angle			
	Paziente	1							
	TG119HN	MONACO	IMRT	Octavius		11	97,7	100	0,33
1	TG119HN	MONACO	IMRT	Octavius		12	94	98,7	0,29
	TG119HN	MONACO	IMRT	Octavius		13	95	98,6	0,22
	TG119HN	MONACO	IMRT	Octavius		14	99,2	100	0,45
	TG119HN	MONACO	IMRT	Octavius		15	89,A	89,4	0,28
1	TG119HN	MONACO	IMRT	Octavius		16	91,5	99,2	0,53
1	TG119HN	MONACO	IMRT	Octavius		17		92,3	0,13
	TG119HN	MONACO	IMRT	Octavius		18	67,7	98,1	0,30
	TG119HN	MONACO	IMRT	Octavius		19	90,1	97,5	0,38
	TG119HN	MONACO	IMRT	Octavius		ALL	97,8	51.5	2,91
	F	MONACO	dMLC	RW3		1	100	100	2,43
	F	MONACO	dMLC	RW3		2	100	100	2,09
	F	MONACO	dMLC	RW3		3	100	100	3,27
	F	MONACO	dMLC	RW3		4	95,5	100	2,21
	F	MONACO	dMLC	RW3		5	100	100	3,88
1		MONACO	dMLC	RW3		6	98,5	100	2,29
	F	MONACO	dMLC	RW3		7	100	100	1,67
	F	MONACO	dMLC	RW3		8	100	100	2,90
	F	MONACO	dMLC	RW3		9	98,9	100	1,69
1	F	MONACO	dMLC	RW3		ALL	99,1	100	22,42
	TG119 Cshape	MONACO	VMAT	RW3		41		63.7	0,16
	TG119 Cshape	MONACO	VMAT	RW3		42	78,9	78,6	0,14
	TG119 Cshape	MONACO	VMAT	RW3		43	75,9	92,7	0,16
	TG119 Cshape	MONACO	VMAT	RW3		ALL	66,1		0,45
	S	MONACO	VMAT	RW3		31		98,6	0,79
1	S	MONACO	VMAT	RW3	21000100	32	85.8	98.9	0.75
	5	MONACO	VMAT	RW3		ALL	83.9	95,8	1,53
	68229	MONACO	VMAT	Octavius		51		96,1	0,56
	68229	MONACO	VMAT	Octavius		52		90.2	0.56
	68229	MONACO	VMAT	Octavius		53		95	0,49

41 11 41

what can happen if the instruments are not calibrated

-120 -00 -00 0 00 00 120

ALTERNATIVE - INDEPENDENT REAL-TIME BEAM MONITOR SYSTEM

Courtesy of Andrew Jongho Jung Princess Margaret Cancer Centre (Toronto)

- Possible QA of the LINAC
- Pre-Treatment QA activities
- Error prevention instead of error management
- Intra-fractional verification system
- Real-Time user interaction
- Automated monitoring of every single treatment fraction
- Patient delivery and safety improved in real-time
- In-Vivo evaluation

Brachytherapy QA

....

Brachytherapy QA

Quality Control of Brachytherapy Equipment, 2004 (ESTRO)

Description	М	Minimum requirements	
	1	Fest frequency	Action level
Safety systems			
Warning lights		daily/3M	-
Room monitor		daily/3M*	-
Communication equipment		daily/3M*	-
Emergency stop		3M	
Treatment interrupt		3M	-
Door interlock		3M	-
Power loss		3M	-
Applicator and catheter attachme	ent	6M	-
Obstructed catheter		3M	-
Integrity of transfer tubes and ar	oplicators	3M	-
Timer termination		daily	-
Contamination test		А	-
Leakage radiation		Α	-
Emergency equipment (forceps,	emergency safe,	daily/3M*	
survey meter)			
Practising emergency procedure	s	Α	-
Hand crank functioning		A	
Hand held monitor		3M/A**	-
Physical parameters			
Source calibration		SE	>5 %
Source position		daily/3M*	>2 mm
Length of treatment tubes		А	>1 mm
Irradiation timer		А	>1 %
Date, time and source strength in	n treatment unit	daily	-
Transit time effect		А	-

EST<u>ro</u>

IDENTIFY OR PREVENT SOURCE OF ERRORS?

Look for: Small or big errors? Rare or frequent errors? Random or systematic errors? Unpredictable or newly errors?

To be accurate once a year (Annual QA) or to be adequate everyday (Daily QA)?:

It is all about continuous improvement

CONCEPT – Take Home Messages

Expert Brainstorming- Multiple-criteria decision

Decision Maker

Wrong Workflow or Healthcare Model - Error investigation

Results: Simplify and prevent accident

Take Home Messages

Organization of the Quality System in Radiotherapy

- Vision of the process and service provided
- Codified structure and responsibility
- · Documentary collection, training and performance monitoring
- Detail of the operating instructions
- Sustainable and viable organizational models
- Improvement actions, Audits and Reviews
- · Awareness of the quality of work and information support available

Risks of miss-interpretation of QA Programme

- Implementation and description of impractical or unsustainable processes
- Detailed but unreliable walkthrough description (Review)
- Inconsistency between «Best-Practice» and «Clinical-Practice»
- Useless production of documents with staff repulsion to correct use
- Lack of awareness of the quality of work

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Modena

"That's too much!!!"

(Praha 2009)

