

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Modena

QA Tools

EPID, Independent Dose/MU calculation, Logfiles, Patient QA

Gabriele Guidi Az. Ospedaliero-Universitaria di Modena Guidi.Gabriele@aou.mo.it Phone: +39 059 422 5699

Thanks to Maria Victoria Gutierrez for the contributions in many slides

Strategies and Guideline (i.e. Independent Dose/MU Calculation vs. EPID QA)

AAPM SCIENTIFIC REPORT

.........

....

MEDICAL PHYSICS

Report of AAPM Task Group 219 on independent calculation-based dose/MU verification for IMRT

Timothy C. Zhu1 |Sotiris Stathakis2 |Jennifer R. Clark3 |Wenzheng Feng4 |Dietmar Georg5 |Shannon M. Holmes6 |Stephen F. Kry7 |Chang-Ming Charlie Ma8 |Moyed Miften9 |Dimitris Mihailidis1 |Jean M. Moran10 |Niko Papanikolaou2 |Bjorn Poppe11 |Ying Xiao1

¹Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA ²Department of Radiation Oncology, UTHSCSA, San Antonio, TX, USA ⁸Sun Nuclear Corporation, Melbourne, FL, USA ⁴Department of Radiation Oncology, Columbia University, New York, NY, USA ⁵Department of Radiation Oncology, Medical University Vienna, Vienna, Austria ⁶Standard Imaging, Middleton, WI, USA ⁷IROC, UT MD Anderson Cancer Center, Houston, TX, USA ⁶Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA ⁶Department of Radiation Oncology, University of Colorado Denver, Aurora, CO, USA ⁶Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA ¹⁷IPius Hospital & Carl von Ossietzky University, Oldenburg, Germany

Correspondence Timothy C. Zhu, University of Pennsylvania, Philadelphia, PA, USA. Email: Timothy.Zhu@pennmedicine.

Sotiris Stathakis, Mays Cancer Center - MD Anderson Cancer Center, San Antonio, TX, USA. Email: Stathakis@uthscsa.edu

Abstract

Independent verification of the dose per monitor unit (MU) to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance (QA). We discuss the role of secondary dose/MU calculation programs as part of a comprehensive QA program. This report provides guidelines on calculation-based dose/MU verification for intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) provided by various modalities. We provide a review of various algorithms for "independent/second check" of monitor unit calculations for IMRT/VMAT. The report makes recommendations on the clinical implementation of secondary dose/MU calculation programs; on commissioning and acceptance of various commercially available secondary dose/MU calculation programs; on benchmark QA and periodic QA; and on clinically reasonable action levels for agreement of secondary dose/MU calculation programs.

Received: 3 August 2022 Revised: 23 April 2023 Accepted: 15 May 2023

DOI: 10.1002/mp.16536

AAPM SCIENTIFIC REPORT

MEDICAL PHYSICS

AAPM Task Group Report 307: Use of EPIDs for Patient-Specific IMRT and VMAT QA

Nesrin Dogan¹ | Ben J. Mijnheer² | Kyle Padgett¹ | Adrian Nalichowski³ | Chuan Wu⁴ | Matthew J. Nyflot⁵ | Arthur J. Olch⁶ | Niko Papanikolaou⁷ | Jie Shi⁸ | Shannon M. Holmes⁹ | Jean Moran¹⁰ | Peter B. Greer^{11,12}

¹Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA
 ²Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
 ³Department of Radiation Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
 ⁴Department of Radiation Oncology, Sutter Medical Foundation, Roseville, California, USA
 ⁶Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
 ⁶Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
 ⁶Department of Radiation Oncology, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, California, USA
 ⁶Department of Radiation Oncology, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, California, USA
 ⁶Department of Radiation Oncology, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, California, USA
 ⁷Division of Medical Physics, UT Health-MD Anderson, San Antonio, Texas, USA
 ⁸Sun Nuclear Corporation – A Mirion Medical Company, Melbourne, Florida, USA
 ⁹Standard Imaging, Inc., Middleton, Wisconsin, USA
 ¹⁰Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
 ¹¹Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, NSW, Australia
 ¹²School of Information and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia

Correspondence

Nesrin Dogan, PhD, Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA. Email: ndogan@med.miami.edu

Abstract

Purpose: Electronic portal imaging devices (EPIDs) have been widely utilized for patient-specific quality assurance (PSQA) and their use for transit dosimetry applications is emerging. Yet there are no specific guidelines on the potential uses, limitations, and correct utilization of EPIDs for these purposes. The American Association of Physicists in Medicine (AAPM) Task Group 307 (TG-307) provides a comprehensive review of the physics, modeling, algorithms and clinical experience with EPID-based pre-treatment and transit dosimetry techniques. This review also includes the limitations and challenges in the clinical implementation of EPIDs, including recommendations for commissioning, calibration

upenn.edu

TABLE 2 Commercially	available 2nd N	IU verification software
----------------------	-----------------	--------------------------

Software	Algorithm	Supported	Input	Output
RadCalc (LifeLine Software, Inc.)	Modified Clarkson	IMRT VMAT TomoTherapy CyberKnife Halcyon	Effective depth Patient external contour Plan parameters	One point/2D
MUCheck (Oncology Data Systems, Inc.)	Modified Clarkson	IMRT VMAT TomoTherapy CyberKnife	Effective depth Average depth Average SSD Plan parameters	One point
IMSure (Standard Imaging, Inc.)	Three Source Model	IMRT VMAT	Effective depth Plan parameters	Multiple points
Diamond (PTW Freiburg GmbH)	Modified Clarkson	IMRT VMAT	Effective depth Plan parameters	One point
DoseCHECK (Sun Nuclear, Corp)	Collapsed Cone Convolution/ Superposition	IMRT VMAT TomoTherapy Halcyon	Patient geometry Plan parameters	3D dose calculation
DosimetryCheck (Math Resolutions LLC)	Collapsed Cone Convolution/ Superposition	IMRT VMAT	Plan parameters EPID measurements	3D dose calculation
Mobius 3D (Varian Medical Systems, Inc)	Collapsed Cone Convolution/ Superposition	IMRT VMAT TomoTherapy	Plan parameters EPID measurements	3D dose calculation

TABLE 3	2D algorithms and evaluation methods available in various second dose/MU calculation system and the specifics of various
algorithm typ	S

Alg. types	Hetero. Corr. Methods	Head Scatter Models	Pat. Geom.	# Calc. points	Eval. Method
1. Factor based	A. RTAR ¹	a. HS central axis meas.	2D contour/CT	a. one point	(a). % err.
2. Model based	B. Batho power ²	b. HS off-axis meas.3		β. 2 – 10 points	(b). Gamma Index (or DTA)
3. Monte Carlo (MC)	C. ETAR ⁴	c. Model: flattening filter ³		γ. Planar dose	(c). DVH
4. Deterministic (GBBS)	D. FFT ⁵⁻⁷	d. Model: ff+cs+ps ^a			
	E. Material Z				

"This refers to three source headscatter model composed of flattening filter (ff), collimator scattering (cs), and primary-collimator scattering (ps)

TABLE 4	3D algorithms	and evaluation	methods a	available i	n various	second MU	calculation	system a	and the s	specifics (of various
algorithm type	es										

Alg. types	Hetero. Corr. Methods	Head Scatter Models	Pat. Geom.	# Calc. points	Eval. Method
1. Factor based	A. FFT⁵	a. HS off-axis meas.3		β. 2 – 10 points	(a). % err.
2. Model based	B. Collapsed cone ^{8,9}	b. Model: flattening filter ³	3D contour/CT	γ. Planar dose	(b). Gamma Index (or DTA)
3. Monte Carlo (MC)	C. Material Z	c. Model: ff+cs+ps ^a		η 3D dose cloud	(c). DVH
4. Deterministic (GBBS)	D. Secondary electron transport	d. Model: source obscuring ³			
		e. Model: monitor backscattering ³			

^aThis refers to three-source head scatter model composed of flattening filter (ff), collimator scattering (cs), and primary-collimator scattering (ps).

Dose algorithm, acceptance and commissioning

TABLE 7 Key tasks for dose algorithm check, acceptance, and commissioning for the secondary MU calculation program

Tasks	Data required					
Dose algorithm check						
Linac Physics Model	Energy, SAD, Dmax, size/angle range (Jaw, gantry, collimator, couch)					
Linac Dosimetry Model/ Beam Data	PDD/TMR(open, wedge), Profile(open, wedge), Output Factor (open Sc/Sp, wedge), transmission factors (Jaw, block tray, comp tray, couch, immobilization, etc.), reference MU definition					
MLC Physics Model	MLC type, leaf number, size, etc.					
MLC Dosimetry Model	Attenuation (inter and intra leaf), dosimetric leaf gap, etc.					
Tasks	Test required					
Acceptance*						
Software	Software running Import-export PDD and profile comparisons Test cases					
Hardware	Printing					
Tasks	Test required					
Commissioning						
Open beam Homogenous phantom	SSD setup, various Jaw size and depth SAD setup, various Jaw size and depth SAD setup, various Off axis point with representative jaw size and depth					
Static field Homogenous phantom	Blocked field (Block/MLC) Compensator field Wedge field (CAX and Off axis) Field edge Skin Flash Surface slope					
Dynamic field Homogenous phantom	Dynamic wedge (CAX and Off axis) Step and shoot Sliding window VMAT					
Heterogeneous phantom	Different density tissue internal (lung/bone, etc) Different density tissues interface Different density field edge					
Real patient plan	Statistic evaluation between real patient plans and MU calculation program results.					
Criteria	Percentage, Gamma index or DVH (based on plan type, site, etc.)					
Benchmark points	Dose/MU points, see Table 8					

"We recommend following the manufacturer's recommendation for acceptance tests

Vendors available (EPID Dosimetry)

TABLE 1 Summary of current EPID technology and dosimetry products.

Software	Version	Compatible linac	Characteristics		Comparison calculation	Reference (derived from EPID images)
Portal Dosimetry (Varian)	1.7	Varian	Pre-treatment	2D	Vendor algorithm	Image
Adaptivo (Standard	1.5	Varian	Pre-treatment	2D	Vendor algorithm	Image
Imaging)		Varian	Transit	2D	Vendor algorithm	Image
SOFTDISO (Best Medical)	1.0	Varian	Pre-treatment	2D	Vendor algorithm	Image (non-dosimetric)
		Elekta				
		Varian	Transit	0D	TPS	Dose in patient (at isocenter)
		Elekta				
Epiqa (EPIdos)	5.0	Varian	Pre-treatment	2D	TPS	Dose in water slab
		Elekta				
EPIbeam and EpiGray	1.0.6 and 2.0.10	Varian	Pre-treatment	2D	Vendor algorithm	Dose in water slab
(DOSIsoπ)		Elekta				
		Varian	Transit	0D	TPS	Dose in patient
		Elekta				
EPIDose (Sun Nuclear)	8.4 (SNC patient)	Varian	Pre-treatment	2D	TPS	Dose in water slab
		Elekta				
PerFRACTION	2.11.0	Varian	Pre-treatment	2D	Vendor algorithm	Dose in water slab
(Sun Nuclear)		Elekta				
		Varian	Pre-treatment	3D	TPS	Dose in patient (non-dosimetric)
		Elekta				
		Varian	Transit	2D	Vendor algorithm	Dose in water slab
		Elekta				
		Varian	Transit	3D	TPS	Dose in patient (non-dosimetric)
		Elekta				
RadCalc EPID (LAP)	7.2	Varian	Pre-treatment	3D	TPS	Dose in patient
		Elekta				
		Varian	Transit	3D	TPS	Dose in patient
251/11/2 N 1		Elekta				D
3DVH (Sun Nuclear)	3.3	Varian	Pre-treatment	3D	IPS	Dose in patient
iViewDose (Elekta)	101	Elekta	Transit	3D	TPS	Dose in patient
TVIEWDUSE (Elekia)	1.0.1	Liekla	แล่ปอเเ	30	IFO	Dose in patient

FIGURE 2 Schematic representation of the various electronic portal imaging device (EPID)-based patient-specific quality assurance (PSQA) techniques. (a, b) Forward methods compare measured two-dimensional (2D) images or dose distributions with predicted images or dose distributions at the EPID level. Back-projection methods, both (c) non-transit and (d) transit, provide dose distributions in a phantom or patient. (Reproduced from ref. 45).

Some Hybrid Machine allow to calculate the transit dose, directly from the detectors, during the delivery (i.e. Tomotherapy)

0D, zero dimensional; 2D, two dimensional; 3D, three dimensional; EPID, electronic portal imaging device; TPS, treatment planning system.

EPID Characteristic

TABLE 2 Characteristics of the currently available EPID systems.

	Varian aS1000 (C-Series and Truebeam) ^a	Varian aS1200 (Truebeam)	Varian aS1200 (Halcyon/ Ethos)	Elekta iViewGT (AL panel)	Elekta iViewGT (AP panel)	Elekta Unity (AP panel) ^b	
Moveable lateral, sup-inf	Yes	Yes	No	Yes	Yes	No	LARAMS?
Moveable up-down	Yes	Yes	No	No	No	No	planar beauting
SID (cm)	100–180	100-180	154	160	160	265.3 NO-00	
Dimensions (cm ²) lateral × superior-inferior	40 × 30	43×43 (40 × 40) dosimetry mode	43 × 43	41 × 41	41 × 41	41 × 41	
Dimensions at isocenter (cm ²)	40 × 30	43 × 43	27.9 × 27.9	25.6 × 25.6	25.6 × 25.6	22.3 × 22.3°	<u>_</u> <u>л</u>
Pixel size (mm ²)	0.392×0.392	0.336×0.336	0.336×0.336	0.400×0.400	0.400×0.400	0.400×0.400	
Frame rate (Hz)	Up to 20 ^d	Up to 20	Up to 20	3	Up to 15	Up to 15	
DICOM image Format export (including DPS ^e)	Yes ^f	Yes	Yes	g	g	g	
Other dosimetric format				Image data in HIS or lossless JPEG format- Gantry/DPS info in text XML file (license required) ^h	Image data in HIS or lossless JPEG format- Gantry/DPS info in text XML file (lice nse required) ^h	Image data in HIS or lossless JPEG format- Gantry/DPS info in text XML file (license required) ^h	
Dosimetric cine mode acquisition (including DPS ^e)	Yes C-Series ⁱ No Truebeam	No ^j	No ^j	Yes ^{h,k,l}	Yes ^{h,k,I}	Yes ^{h,k,l}	
Support for FFF imaging	Yes ^m	Yes	Yes	No	Yes	Yes	

Achievable passing rate vs. Metrics and Tolerance

TABLE 8 Achievable y passing rates and dose agreement obtained from QA measurement results reported in the literature when using EPIDs for pretreatment and transit dosimetry.

2D Pro-troatmont tochniquo

.........

......

First author year	Delivery technique	Metric: y	criteria	Average gamma pass rate (%γ < 1)
Howell, 2008 ¹⁰⁰ (Varian Portal Dosimetry)	IMRT	3%G ^a /31	mm	95.9% ±10%
Nelms 2012 ⁴² (SNC EPIDose)	IMRT	3%G/3 m	ım	99.7% ± 0.1% (Range 94.0–100)
		2%G/2 m	ım	97.8% ± 0.4% (Range 82.0-100)
Bailey 201295 (EPIDose, Portal Dosimetry)	IMRT, VMAT	3%G/3 m	IM	>95% (Range 95-99)
Wu 201298 (RadCalc EPID)	IMRT, VMAT	3%G/3 m	IM	IMRT: 97.2% ±3.0% (range 89.8–100)
				VMAT: 95.5% ± 6.0% (range 69.3–100)
Transit dosimetry techniques				
First author year	Delivery technique	Anatomical site(s)	Metric	Average achieved agreement
François 2011 ¹³⁶ (EPIgray)	IMRT	Prostate	∆Dose _{lso} ^b	1.6% ± 1.4%
Ricketts 2016 ¹²⁴ (EPIgray)	3DCRT	Breast	$\Delta Dose_{1so}$, mean γ^c	-0.6% ± 7.4% (2SD), 0.38 (range 0.03-1.17)
	IMRT	Prostate	$\Delta \text{Dose}_{\text{lso}}$, mean γ	-4.4% ± 8.2% (2SD), 0.80 (range 0.36-1.34)
	IMRT	H&N	$\Delta Dose_{lso}$, mean γ	-5.4% ± 24% (2SD), 0.89 (range 0.54-1.38)
Celi 2016 ¹²⁶ (EPIgray)	3DCRT/IMRT/VMAT	Various	∆Dose _{tso}	1.9% ± 5.2%
Cilla 2016 ²⁰ (SOFTDISO)	VMAT	H&N	∆Dose _{tso}	0.2% ± 1.9%
			2D 3%G/3 mm ^d	93%; γ _{mean} : 0.42
Consorti 201792 (SOFTDISO)	SBRT	Lung	∆Dose _{tso}	±4%
			2D 3%G/3 mm ^e	96%; γ _{mean} : 0.6
Piermattei 2018 ¹²⁸ (SOFTDISO)	3DCRT/IMRT/VMAT	HN, brain	2D 3%G/3 mm	99%
		Breast, abdomen, thorax, pelvis 2D	5%G/5 mm	96%, 96%, 93%, 95%
Nailon 2019 ¹²⁹ (RadCalc EPID)	3DCRT/VMAT	Nine sites	∆Dose _{tso}	1.9% ± 4.5%
Sterckx 2019 ¹³⁷ (iViewDose)	VMAT	Prostate	3D 3%G/3 mm	99.0% ± 1.0% (1SD); γ _{mean} : 0.33 ± 0.03 (1SD)
Yedekci 2019 ¹¹⁴ (iViewDose)	VMAT	Prostate	3D 3%G/3 mm	97.2% ± 2.6% (1SD) (range 92.7–100)

2D, two-dimensional; 3D, three-dimensional; 3DCRT, 3D conformal radiation therapy; EPID, electronic portal imaging device; H&N, head and neck; IMRT, intensity modulated radiation therapy; QA, quality assurance; SD, standard deviation; VMAT, volumetric modulated arc therapy.

^aG: global.

^bΔDose_{lso}: dose deviation at the isocenter.

^cMean g: the mean gamma of the comparison.

^d2D 3%G/3 mm: 2D dose distribution in the global gamma analysis and 3 mm distance to agreement. °3D 3%G/3 mm: 3D dose distribution in the global gamma analysis and 3 mm distance to agreement.

TABLE 9 Metrics and tolerance limits reported in the literature when using EPIDs for PSQA

Pre-treatment tecl	hniques			
First author year	Delivery technique	Anatomical site(s)	Metric	Tolerance limits ^a
van Zijtveld 2006 ¹⁰⁹	IMRT	Various	2D γ: 3% local/3 mm	$P_{min} (\gamma < 1)$: 85%; area $\gamma > 1$: <1 cm ²
Howell 2008 ¹⁰⁰	IMRT	Various	2D γ: 3% local/3 mm	P _{min} (y < 1): 89.6%; y _{max} : 3.20; y _{mean} : 0.47
Wu 2012 ⁹⁸	IMRT	Various	2D γ: 3% local/3 mm	P _{min} (y < 1): 90%
Wu 2012 ⁹⁸	VMAT	Various	3D γ: 5% local/3 mm	P _{min} (y < 1): 90%
Transit dosimetry	techniques			
First author year	Delivery technique	Anatomical site(s)	Metric ^b	Tolerance limits ^a
Hanson 2014 ¹²⁵	3DCRT	All, except CNS and TB	I ∆Dose _{tso}	±5%
Mijnheer 2015 ¹⁶	3DCRT/IMRT/VMAT	Most	3D γ: 3% global/3 mm/5	0% P _{min} (γ < 1): 85%; γ _{max} : 2.0; γ _{mean} : 0.5; ΔDose _{iso} : ± 3%
		H&N/rectum/gynecolog	y 3D γ: 3% global/3 mm/5	0% P _{min} (γ < 1): 80%; γ _{max} : 2.5; γ _{mean} : 0.7; ΔDose _{iso} : ± 4%
		Breast	3D γ: 3% global/3 mm/5	0% P _{min} (γ < 1): 50%; γ _{max} : 5.0; γ _{mean} : 0.5; ΔDose _{iso} : ± 3%
Ricketts 2016 ¹²⁴	3DCRT	Breast	∆Dose _{tso}	±7%
	IMRT	H&N	∆Dose _{lso}	-6% ± 7%
	IMRT	Prostate	∆Dose _{tso}	-4% ± 8%
Celi 2016 ¹²⁶	3DCRT/IMRT/VMAT	Most	∆Dose _{lso}	±7.5%
		Breast-lateral	∆Dose _{lso}	±6.7%
		Int. mammary lymph nodes	∆Dose _{tso}	±10.0%
Cilla 2016 ²⁰	VMAT	H&N	∆Dose _{tso}	±5%
			2D γ: 3% global/3 mm	P _{min} (γ < 1): 90%; γ _{mean} : 0.67
Piermattei 2018 ¹²⁸	3DCRT/IMRT/VMAT	Six sites	∆Dose _{lso}	±5%
			2D γ: 3% global/3 mm	P _{min} (γ < 1): 90%; γ _{mean} : 0.67
Nailon 2019 ¹²⁹	3DCRT/VMAT	Nine sites	∆Dose _{lso}	±10%
Bossuyt 2020 ¹¹⁹	3DCRT/IMRT/VMAT	Breast	2D γ: 7% local/6 mm/ 20 threshold	0% $P_{\min} (\gamma < 1): 90\%$
		Whole brain radiotherapy	2D γ:7% local/3 mm/20 threshold	% P _{min} (γ < 1): 90%
		Palliative treatments	2D γ:7% local/5 mm/20 threshold	% P _{min} (γ < 1): 93%
		H&N and brain	2D γ: 3% global/3 mm/2 threshold	0% P _{min} (γ < 1): 95%
		Rectum	2D γ: 5% global/5 mm/2 threshold	0% P _{min} (γ < 1): 93%
	7	Other treatment sites (with mask)	2D γ: 5% global/3 mm/2 threshold	0% P _{min} (γ < 1): 95%
		Other treatment sites (without mask)	2D γ: 5% global/5 mm/2 threshold	0% P _{min} (γ < 1): 95%
		Stereotactic	2D γ: 10% local/1,2,3 mm/20% threshold	P _{min} (γ < 1):95%

CNS, central nervous system; 2D, two-dimensional; 3D, three-dimensional; 3DCRT, 3D conformal radiation therapy; EPID, electronic portal imaging device; H&N, head and neck; IMRT, intensity modulated radiation therapy; PSQA, patient-specific quality assurance; TBI, total body irradiation; VMAT, volumetric modulated arc therapy. ^a P_{min} ($\gamma < 1$): minimum pass rate; γ_{max} : maximum γ ; γ_{maan} : mean γ . ^bΔDose_{lso}: dose deviation at the isocenter.

Challenges and issues

EPID

3.3 | Limitations, applications, and challenges in clinical implementation of EPIDs

Independent Dose/MU Calculation

3.4.4 | High-Z heterogeneities

Dose accuracy is particularly challenging to achieve near high-Z interfaces and is exacerbated for higher energy beams and higher Z materials.^{77,86} At the vicinity of both upstream and downstream metal interfaces, dose errors in C/S are often in the range of 10–15% compared to measurement (underestimating dose at the upstream interface and overestimating it at the downstream), but these errors can easily exceed 20%.⁸⁷⁻⁸⁹ GBBS has been shown to agree within 1%–2% with MC,⁸⁶ which in turn agrees reasonably well (within ~5%) with measurement.^{86,90} These effects can extend several cm from the implant; even 2 cm away, C/S algorithms can still show residual dose error of 6%–12%.^{87-89,91} namic MLC, and/or VMAT. If the secondary calculation system includes heterogeneity corrections, a heterogeneous benchmark should also be evaluated. Assuming all the benchmark plans calculated in the planning system agree with measurements, the secondary calculation software should agree with the TPS. Reasonable agreement is within 5% (for both field-by-field or composite), and this should be achieved for the benchmark cases. Failure to achieve this level of agreement should result in either (a) improved commissioning of the secondary calculation system such that appropriate agreement is achieved, or (b) identification of the limitations of the secondary system, particularly in the case of challenging benchmarks, and establishment of alternate criteria for treatment plans of a similar nature.

15/09/2023

G. Guidi - 2023 ICTP. School on Medical Physics for Radiation Therapy: Dosimetry, Treatment Planning and Delivery for Advanced Applications

EPID QA

-			-
	ah		7
	au	<i>n</i> e	-

List of key references on non-transmission based dose verification methods

Verification procedure	Type of verification	Key references	Objective of verification or subject of the study
QA of treatment machine	QA	Prisciandaro [93]	Radiation-light field congruence
	QA	Dirkx [52,53], Budgell [80,87]	Linac output, beam profile flatness and symmetry
	QA	Baker [84], Yang [95], Samant [96], Parent [97]	MLC leaf position for step-and-shoot fields
	QA	Vieira [86]	MLC leaf position and absolute output for low MU segmented fields
	QA	Vieira [98], Partridge [99], Chang [88]	MLC leaf position during dynamic treatment

How do you support a No-Coplanar beam using EPID/CBCT? Why do we not support the transit dosimetry for those patients?

Begin of the EPID Pre-Treatment verification

2D or 3D? Single o End-To-End errors assessment

........

CBCT Recalculation: Issues

Today we have notice of possible issues related to Image Quality, ED Table, Resolutions, Reconstruction, Artefacts, Non-Homogeneity, High-Z, Dose algorithm

Table 4

.....

Overview of the various errors that can be detected with EPID dosimetry

Potential errors	Pre-treatment	verification			Treatmer	Treatment verification				
	2D/3D	2D		3D	2D			3D		
	No phantom	Behind phantom	Inside phantom	Inside phantom	Before patient	Behind patient	Inside patient	Inside patient		
Machine										
Wedge presence and direction	Yes (systemati	Yes (systematic errors)					Yes (systematic and random errors)			
Presence of segment	Yes (systemati	Yes (systematic errors) Yes (systematic and random errors)								
MLC leaf position/speed	Yes (systematic errors) Yes (systematic and random errors)									
Leaf sequencing	Yes (systematic errors) Yes (systematic and random errors)									
Collimator angle	Yes (systematic errors) Yes (systematic and random errors)									
Beam flatness and symmetry	Yes (systemati	c errors)			Yes (systematic and random errors)					
Linac output during treatment	No				Yes					
Gantry angle	No	Possible	Possible	Possible	No	Possible	Possible	Possible		
Plan										
Transmission through leaves	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Steep dose gradients	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
TPS modelling parameters for MLC	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Delivery of wrong patient	Yes (if same p	lan is used fo	r verification	and	Yes	Yes	Yes	Yes		
plan	treatment)									
Dose calculation in phantom or patient	No	No	Yes	Yes	No	No	Yes	Yes		

The NCS report has been downloaded on 29 Mar 2017

.........

.........

What can happen if the instruments are not calibrated

Logfile Experiences

Integrated server-based web application, access from ANY networked PC

Secondary independent Dose Calculation:
 Double Dose Check;
 Algorithm Validation

Pre-Treatment & In-Vivo Dosimetry:
Patient Follow Up during Treatment;
Detailed Analysis of Treatment Plan;
Detection of Errors & Uncertainties;
Action Plan for their reduction;

Check Machine QA:

> Imaging; MLC & VMAT;
 > TG 142 templates;
 > Phantoms for tests.

✓ Independent Dose Check ✓ Pre-Treatment QA ✓ Patient Monitoring

Log-Files Platform – How does it works?

How does it work?

Dose Check – Independent Calculation

TPS Dose Calculation vs. Independent Dose Calculation using RT files & Convolution/Superposition Algorithm.

- ✓ Raystation
- ✓ Monaco

Information of VersaMO#1 and VersaMO#2 was sent to Logfiles Platform (plans in phantom) They provide the adjusted **beam models...**

✓ More Accurate DoseCHECK[™]

Isocenter Point **ΔD[%]** = (0,1 ± 0,5) % Overall Gamma **ΔD[%]** = (0,5 ± 0,8)%

(3% / 3mm – Pass:95%)

EPID vs. Log Files

..........

......

Log_Eilos Diatform					
Log-riles riadolili	Analy	sis type	EPID Integrated	EPID Cine	Machine log
	Fraction 0– 2D		~		
	Fraction 0 – 3D	EPID based		✓	~
Analysis Type?		Log only			~
	Fraction N – 2D	Tansit Dosimetry	~		
		Relaive	~		
	Fraction N – 3D	EPID based		~	~
		Log only			~

	Analysis Type	EPID	Log-files
	Fraction 0– 2D	 2D Absolute Dose (Inherently includes MLC, Dose Rate, Collimator, Jaws) 	No data from Logs
PID vs Log?	Fraction 0 – 3D	MLC positions	 Dose Rate – from Linac monitor chamber Gantry Angle (instantaneous) Collimator position
	Fraction N – 2D	2D Absolute Transit Dose or 2D Relative Fluence (Inherently includes Patient, MLC, Dose Rate, Collimator, Jaws)	No data from Logs
	Fraction N – 3D		 Dose Rate – from Linac monitor chamber Gantry Angle (instantaneous) Collimator position

E

2D-3D Calculation or CT/CBCT Calculation?

Log-Files Platform

What are we comparing?

Analysis Type	Reference Data	Measured Data	Calculated On
Fraction 0- 2D	Dose in water phantom at EPID panel generated by SDC	EPID	EPID
Fraction 0 – 3D	TPS data	EPID and/or Log-file data	CT-Sim
Fraction N – 2D	Dose in water phantom at EPID plane generated by SDC or Baseline data (usually 1 st fraction)	EPID Absolute Transit Dose Measurement or Relative Fluence Measurement	EPID
Fraction N – 3D	TPS data/SDC	- EPID and/ or Log-file data	CT-Sim or CBCT

A Modena...

	Reference Data	Measured Data	Calculation	Analysis
Fraction 0 – 3D	TPS Data	EPID / Log-File data MLC Positions - Dose Rate - Gantry Angle - Collimator position	CT-Sim	Analysis 2D/3D NO Absolute
Fraction N – 3D	TPS data/SDC	Log File data Dose Rate - Gantry Angle - Collimator position	CT-Sim or CBCT	Analysis 3D NO Absolute

Treatment Planning System Connectivity

15/09/2023

.....

Plan Setting, Target, OARs

.....

........

15/09/2023

Plan Settings... General Settings...

Has to be the same name as the plan that will be treated in the machine (MOSAIQ).

Total Prescription Dose...

Has to be completed manually, only Number of Fractions came automatically.

Metrics

.....

15/09/2023

G. Guidi – 2023 ICTP. School on Medical Physics for Radiation Therapy: Dosimetry, Treatment Planning and Delivery for Advanced Applications

Calculation Settings

RT Plan + Dose + CT	Plan Settings Calculation Settings		
Log-Files Platform	Plan Settings - A1TMammDX		🖺 Apply 🗶 Cancel
	Patient: - Age: 63 Gender: Female ID General Settings Calculation Settings		
	3D Calculation Frequency Always Select	Calculation Source ① Fraction 0 Use EPID images if available, otherwise	use logs V
Analysis No	Fraction 0 Fraction 1 When CBCT is received	Fraction <i>n</i> Use EPID images if available, otherwise	use logs V
Error Detection	O Never	Fraction n 2D Baseline Selection Fraction 1 Fraction 1	~
Fraction 0 TM		Fraction 2 - <i>n</i> Fraction 1	~
2D/ 3D Analysis No Error Detection	Use expanded dose region when calculating on CBCT image Expanded distance (cm) 2 Reference Dose Volume Planned	Planned \rightarrow From TPS. Calculated \rightarrow SNC Algorithm.	
-> Fraction N TM	Calculation Source		
3D Analysis No Error Detection	Calculation Source ① Use only log files for calculations (no EPID ima Use EPID images if available, otherwise use lo Require EPID images for all calculations	Any of these two one ages) bgs be "expecting" the info	es is possible. The ne the system will prmation.

15/09/2023

Record

Dose Check: Patients QA

								1	
Points	# Targets	# OARs	Overall Gamma	DVH	Images	🔅 Event	Settings		
ral					E	Point Dos	e		2D Analysis
6)	3		DIST (mm)	3		Absolute Diff (cGy) 20			Not Applicable
6)	10		Passing (%)	95		- Enable Ca	arch Dadiu		
alization			Global		~	Enable Se	arch Radiu		
		☑ 3D Ana	alysis	il				Арру	
		M Allow 0	werali Gamma to trigger passna	ii resuits.					
			TOLERANCE	MEAN	D90%	D95%	MAX	CRITICAL VOLUME (cc)	
		Tarı	gets Diff (%) 5						
		0.	ARs Diff (%) 5						
		Allow s	tructure tolerances to trigger particular	ss/fail results.					
		Clinical (Goals ersal Metric: ENAD5%/5mm					N/A	

15/09/2023

3D Analysis...

<u> </u>	Points 🗱 Targets 🗱 OA	ARs 🔽 Overall Gamma DVH Images 🕻	Event Settings			🕨 CURRENT METRIC 💙 FNAD5%/5mm
Patients	Points					
.11	Composite Point Dose 0 + Add DIC	COM Point + Add Structure Centroid Point	Possible to Add Points f	or evaluation		Current Matric
Frending			Fossible to Add Follits j			
300	DOLNAME	DICOM COORDINATES (mm)	DOSE (Gy)	DOSE DIFF (%/cGy)		
Queue	POTNAME	X Y Z	PLANNED CALCULATED	RELATIVE ABSOLUTE		IONORE POI
	1 Isocenter	0,00 2,00 -15,00	24,704 24,258	-1,8 -44,6		24,258
	Beam Point Dose					
		DICOM COORDINATES (mm)	DOSE (Gy)	DOSE DIFF (%/cGy)	MU/Fx	
	BEAM NAME	NAME - (X,Y,Z) (mm)	PLANNED CALCULATED	RELATIVE ABSOLUTE	PLANNED CALCULATED DIFF (%)	
	1	1 Isocenter - (0, 2, -15) Default	9,063 8,964	-1,0 -9,9	1.251,6 1.265,4 1,1	8,964
	2	2 Isocenter - (0, 2, -15) Default	15,641 15,294	-2,2 -34,7	1.123,1 1.148,6 2,2	15,294

Composite Dose Point:

Beam Dose Point:

OARs

gets								
PTV70				PTV50				
METRIC	TPS	QA	∆%	METRIC	TPS	QA	۵%	
Mean	49,73	49,54	-0,37	Mean	49,95	49,63	-0,64	
D95	47,04	47,10	0,12	D95	47,67	47,71	0,06	

Targets & OARs

- ✓ Gamma Analysis (%);
- ✓ Metric: Mean, D90, D95, Dmax;
- ✓ TPS Dose Value;
- ✓ QA Dose Value;
- √ Δ%.

Body			Vescica			Ano-Retto			FemoreDs			Femore Sn		
99,82% Gam	ıma		99,94% Gar	mma		100,00% Ga	amma		99,98% Gar	nma		100,00% Ga	amma	
METRIC	TPS QA	Δ%	METRIC	TPS QA	Δ%	METRIC	TPS QA	Δ%	METRIC	TPS QA	Δ%	METRIC	TPS QA	Δ%
Mean	8,50 8,49	-0,01	Mean	39,64 39,41	-0,57	Mean	28,38 28,16	-0,76	Mean	15,11 14,66	-3,00	Mean	13,63 13,30	-2,43

Overall Gamma						0	verall Gamma
PASSING RATE (%)	FAILED (%)		FAILED	FAILED POINTS			Passing Rate (%);
	LOW	HIGH	LOW	HIGH	TOTALTOINTS	\checkmark	Total Points;
99.82%	0,16	0,01	559,0	34,0	333.356,0	\checkmark	Failed Points.

Paperits	DVH					
.11		STRUCTURE NAME	MIN	MAX	MEAN	100
300	\checkmark	Ano-Retto	2,86 Gy	51,68 Gy	28,16 Gy	
Queue		Body	0,00 Gy	53,14 Gy	8,49 Gy	80
		EemoreDs	2,40 Gy	37,25 Gy	14,66 Gy	8
		E FemoreSn	1,89 Gy	37,18 Gy	13,30 Gy	olume
		PTV50	44,21 Gy	53,14 Gy	49,63 Gy	4 ative
	\checkmark	PTV70	36,01 Gy	53,14 Gy	49,54 Gy	Rel
	V	Vescica	21,16 Gy	53,10 Gy	39,41 Gy	20
		BowelBag	1,00 Gy	53,14 Gy	18,58 Gy	
		Carbon Fiber	0,00 Gy	0,00 Gy	0,00 Gy	0
		CTV50	46,38 Gy	52,67 Gy	49,99 Gy	
		CTV70	47,70 Gy	52,55 Gy	50,11 Gy	Refer
		Foam Core	0,00 Gy	0,00 Gy	0,00 Gy	

DVH: Min, Max, Mean of each Structure. Reference & Calculated Dose.

Images: Calculated, Planned & Gamma Comparison

....

Ľ

Error Detections - Case

15/09/2023

Fraction 0: Pre-Treatment Patient QA

Fraction 0: Pre-Treatment QA

15/09/2023

Error Detection: Fraction 0

....

Verify all Data arrived correctly from the Machine:

1TEsofago > Fraction 14 > 16 OTT 2019 16:05	✓ LoaFile,
Files Processed (2/4 Received)	Actions
EPID Log RT Tx Record CBCT	Event Report If not, a Retrieve of Remove Fraction Data
3D CALC MODE REF DOSE CT SCANNER USED MACHINE BEAM MODEL DATE	Set as Fraction Q the LogFiles can be
Log Planned VERSAMO1_XVI 30 SEP 2016	Recalculate performed. View beam information
GENDER MRN STATUS DOSE SITE DOB(AGE) Male Active 50 Gy Petvis 04 AUG 1962 (57 yrs) 6 <u>A SNC Server Adm</u> 2.1.0.52820	★ Cancel ▲ Retrieve Retrieve Previous Data
Wald Active Surgery Ferry Surgery Surgery End weight Surgery End weight Surgery End weight Surgery Surgery	From Date
VMAT Adjuvant	16 ott 2019
VUNNERT BETRE V PRUZRZBII	To Date 21 ott 2019
	EPID Images
IGNORE POI	Log Files RT Treatment Records
	CBCTs and Registrations

Verify Fraction Data arrived correctly:

÷	1Tbilatrerale > Fraction 4 > 09 OTT 2019 09:48
*	Approve - Enter a comment for this event
Home	< Z0-0-0-0-0-0-0-0-0-0-0 >
a	
Patients	Incomplete Beam(s): This delivery was identified as having incomplete beam(s). Images and logs indicate a partial delivery for one or more beams in the fraction.
	oints
Trending	Composite Point Dose 🚯
Queue	DICOM COORDINATES (mm) DOSE (Gy)

15/09/2023

G. Guidi – 2023 ICTP. School on Medical Physics for Radiation Therapy: Dosimetry, Treatment Planning and Delivery for Advanced Applications

Error Detection: Fraction 1,2,3....n

........

Combination of information. **Issues for multiple Treatment Planning Systems**

.....

.........

Verify all Data arrived correctly from the Machine:

> 1TEsofago > Fraction 14 × 16 OTT 2019 16:05		 ✓ LogFile, ✓ CBCT + shift
Files Processed (2/4 Received)	Actions	✓ DIBH Interruptions
EPID Log RT Tx Record CBCT	Event Report Remove Fraction Data	
3D CALC MODE REF DOSE CT SCANNER USED MACHINE BEAM MODEL DATE	Set as Fraction 0	If some data do not arrive,
Log Planned VERSAMO1_XVI 30 SEP 2016	Recalculate View beam information	Retrieve Data can be performed.

Verify Fraction Data arrived correctly:

Evaluate Beam Model:

VersaMO#1: Beam model performed with plans sent to Log-Files Platform from Monaco TPS VersaMO#2: Beam model performed with plans sent to Log-Files Platform from Raystation TPS

Patients planned in Monaco \rightarrow VersaMO#1 \checkmark Versamo#2

Patients planned in Raystation \rightarrow VersaMO#1 \blacksquare

This issue it's being solved by SNC with an integrated model for both TPS.

Versamo#2

data do not arrive, a

CBTC Calculation and Issues

In CBCT:

Edit CT Scanner

VERSAMO1 XVI CT to ED Table

Error Detection

CT Scanne Institutio VERSAMO1 XVI

Daily, CBCT's are being performed to patients with different acquisition protocols. CBCT should be calibrated in Hounsfield Units for each one of the clinical protocols.

But... Platfomr allows only one Calibration Curve for the CBCT: the calibration curve implemented nowadays is one measured with the Gammex phantom with protocol: Fast Prostate Seed S10: S10 (120KV; 16mA; 16ms).

LIMITATION: due to the multiple protocols of acquisition the image quality and ED Table could be different, but the systems could record only one ED Table? A mean ED table could not be a solutions, might you have to find the appropriate tolerance or thresholds

15/09/2023

Investigate the issues and find a workaround acceptable for the center

S20

In order to overcome this limitation...

A universal curve that contemplate all protocols is under study

CT of Catphan Phantom was acquired (Water bags were positioned around the phantom to evaluate not only the change of the CBCT calibration curve according to the protocol, but also if there is scatter influence on CBCT calibration curves).

No.5 CBCT with different Protocols were measured in order to obtain No.5 calibration curves:

To continue... a PTV will be contoured in the catphan phantom and a treatment plan will be performed in order to obtain the correspond DVH. The same treatment plan will be calculated in each one of the CBCT's and DVH will be analysed.

15/09/2023

Ideally a Workflow

Types of Analysis

Pre-Treatment QA: Fraction 0[™]

- ✓ Used for 3DCRT, IMRT, VMAT, SRS/SBRT;
- ✓ 2D/3D analysis QA with EPID &/or LogFile

In-Vivo Monitoring: Fraction NTM

- ✓ 2D/3D analysis Quality Assurance with EPID &/or LogFile;
- Transmission measured during treatment delivery
- ✓ Dose reconstruction based on patient positioning/anatomy;
- ✓ MLC movements & delivered MU during patient treatment.

Dose Matrixx vs. Log-Files accuracy

Enhancing patient safety with log file analysis : perFRACTION® optimal gamma criteria for VMAT QA

....

........

Patients QA: Daily monitoring

Acquire Device Measurement Event Report Recalculate Event

Approved The Chiever Fractions to be checked

Points 🕜 Beams (2D)	🌐 Targets 🛛 🤀 OAR	s 🛛 🏮 Overall Gamn	a DVH	Images	Event Settings							
Incomplete Beam(s): This deliv	ivery was identified as havin	g incomplete beam(s). I	nages and logs	indicate a pa	artial delivery for one or more	e beams in the fraction.					int 15	
nts										• .	a Point laut	
mposite Point Dose										DOSE IN	errected, build	
A MARKET		DIC	OM COORDINATE	ES (mm)		DO	se (Gy)	DOSE DIF	F (%/cGy)	artially	COTTO	
I NAME		x	Y		Z	PLANNED	DELIVERED	RELATIVE	ABSOLUTE	Partie	attentions	
3 Isocenter		-1,00	1,00		20,00	0,915	0.815	-10,9	-10,0	requires		-
2 Localization		-1,00	1,00		0,00	0,812	0,649	-20,0	-16,3		(BH3)	-

Beam Point Dose 0

.........

.......

........

....

DEAM NAME		DICOM COORDINATES (mm)	DOSE (Gy)		DOSE DIFF (%scGy)	
DEAM NAME		NAME - (X,Y,Z) (mm)	PLANNED	DELIVERED	RELATIVE	ABSOLUTE	
S 3	A	3 Isocenter - (-1.00, 1.00, 20.00) Default v	0,453	0,350	-22,7	+10,3	0 35
O 4		4 Isocenter - (-1,00, 1,00, 20.00) Default *	0,461	0,465	0,8	0,4	[0.485]

1	٦.	٨	E	Э	۰	
	**	2	5	s	9	

Sigma 15,53 % Gamma		Intestino 60,04 % Gamma		External 47,51 % Gamma		Vescica 8,26 % Gamma		retto 60,21 % Gamma		Testa femore dx 30,10 % Gamma			testa femore sx 16,53 % Gamma							
METRIC	TPS QA	Δ%	METRIC	TPS QA	∆%	METRIC	TPS QA	Δ%	METRIC	TPS QA	Δ%	METRIC	TPS QA	Δ%	METRIC	TPS QA	Δ%	METRIC	TPS QA	Δ%
Mean	1,44 1,23	-14,64	Mean	0,79 0,71	-10,28	Mean	0,36 0,30	-15,61	Mean	1,05 0,83	-20,85	Mean	1,20 1,06	-11,60	Mean	0,35 0,29	-19,22	Mean	0,35 0,27	-22,81

Overall Gamma					
DA BAINO DATE (N)	FAILE	ED (%)	FAILED P	OINTS	TOTAL DOWL
PASSING RAIL (%)	LOW	HIGH	LOW	HIGH	TOTAL POINTS
47.51%	52,49	0,00	222.748	t	424.347

Patients QA: might something needs a verification

15/09/2023

......

Patients QA: something goes wrong

ints omposite Point Dose O									
omposite Point Dose									
									vic correct
OI NAME	DIC	COM COORDINATES (mm)		DOSE (G	Y)		DOSE DIFF (%/cGy)		a point is con
	ж	Y 2	. F	ALANNED	DELIVERED	RELATIVE	ABSOLUTE	DOSE IN C	0.731
1 Isocenter	-86,00	-82,00 15,	0	0,709	0,731	3,1	2.2		
O localization	-1,00	3,00 0,0	D	0,158	0,178	12,6	2,0		0.178
eam Point Dose 0									
	DIC	COM COORDINATES (mm)		DOSE (C	(Y)		DOSE DIFF (%/cGy)		
EAM NAME		NAME - (X,Y,Z) (mm)		PLANNED	DELIVERED	RELATIVE	ABSOLUTE		
O 1	1 Isocenter - (-86,00, -82,00, 15,0	10) Default *		0,279	0,291	4,3	1,2		0.291
2	2 Isocenter - (-86,00, -82,00, 15,0	00) Default v		0,430	0,439	2,0	0,9	(i	0.439
PTV 40.05 PTV 48 99.83 % Gamma 99.97 % Ga METRIC TPS QA Δ% Mean 2,72 2,00 D95 2,61 2,60 0,19	mma TPS QA <u>Δ%</u> 3,19 3,20 0,18 3,10 3,11 0,25				Datel	s uncorrecte	ed		7
D-			(Gamma	a kare.				
HS .									
External Lung (Left) 99,78 % Gamma 100,00 % G METRIC TPS QA Δ%	amma 1 TPS QA Δ% N	.ung (Right) 100,00 % Gamma METRIC TPS QA Δ%	SpinalCord (Thorax) 100,00 % Gamma METRIC TPS QA	Mammella Dx 76,51 % Gamm A% METRIC	ia iPS QA Δ%	cuore 100.00 % Gamma METRIC TPS QA Δ%	fegato 100,00 % Gamma METRIC TPS QA Δ%	omero dx 100,00 % Gamma METRIC TPS QA Δ%	Mammella controlaterale 100,00 % Gamma METRIC TPS QA Δ%
Mean 0,31 0,32 2,52 Mean	0,13 0,15 15,03 N	Mean 0,46 0,48 3,62	. Mean 0,15 0,17 8	.28 Mean 1	.88 2,23 18,88	Mean 0,21 0,23 10,74	Mean 0,10 0,12 12,96	Mean 0,13 0,12 -7,51	Mean 0,19 0,21 8,76

ALTERNATIVE - INDEPENDENT REAL-TIME BEAM MONITOR SYSTEM

Courtesy of Andrew Jongho Jung Princess Margaret Cancer Centre (Toronto)

- Possible QA of the LINAC
- Pre-Treatment QA activities
- Error prevention instead of error management
- Intra-fractional verification system
- Real-Time user interaction
- · Automated monitoring of every single treatment fraction
- Patient delivery and safety improved in real-time
- In-Vivo evaluation

Gold Model and Beam Matching – No.4 LINAC

G. Guidi – 2023 ICTP. School on Medical Physics for Radiation Therapy: Dosimetry, Treatment Planning and Delivery for Advanced Applications

On-Axis vs. Off-Axis

Rectangular Fields (i.e. 10x2 and 2x10) Model Fi

Machine QA – Dosimetrical Details

FS-QA 10x10 10MV Profile Results

Real-Time monitoring of the data after QA Sessions

Profile X

0

Distance (mm)

- Measured - Difference

www.www.

50

3 %

0%

-8 %

-6 %

-9 %

100

U

Task Information							ĺ
Execution Date.*	SID (mm):*	Penumbra lower	edge (%):	Uploaded File(s)	Task Execution His	tory	
28 ago 2023 10:45	1600	20 Penumbra biobe	r edge (%):	1.dcm	Execution Date	Status	
		80	r euge (a).		28 ago 2023	✓ Passed	
Flatness method:	Symmetry method:		Smooth Profile:		28 lug 2023	A Warning	
IEC	Point Difference Quotient	Median filtering	No		27.giu 2023	A Warning	
					27 2022	Automine	

Machine QA – Geometrical Details

Baseline Details				HANCOCK WINSTON-LUTZ ISOCENTER 2D Results M	hine Scale: IEC 612	17			
Parameter	Tolerance Settings	Results							
Optimal circle diameter (ISO) (mm) Average: 1,09	Limits			Collimator: 0°					
Baseline: 1,09 mm	Upper Failure 1,5 mm	1,50						1	
	🖾 Upper Warning 1 mm			Collimator ^e 0 0 0	0	0	0	180	270
Use sversge	Lower Warning mm			Couch [®] 0 45 90	270	315	0	0	0
	Lower Failure	100		File Name G0C0T0.dcm G0C0T45.dcm G0C0T90.	m G0C0T270.dcm	G0C0T315.dcm	G90c0T0.dcm	G180C0T0.dcm	G270C0T0.dcm
	Set limits by: Absolute value	[1,03]	1,00				-	-	_
		1		Image Image Image Image					walke.
				Thugo the state state	L'at	van	Ved	417	U CR
Analysiss					_	_	_	-	
Star Shot With Spokes	Star Shi	ot Optimal Circle		(mm) V (mm) V (mm) V	(mm) V	(mm) V	(mm) V	(mm) V	(mm) V
				V U:-0.81 U:-1.23 U:-1.11	U:-014	U: 0.01	U: -0.26	V: 0.29	U: 0.27
				Graph	V-061	W-0.79	• V0.48	U: 0.52	<u>V:-0.05</u>
		$\langle \rangle$		• <u>V:-0.84</u> • <u>V-1.02</u> • <u>V</u>	1.00	1.1917.0		· · · ·	1
				Total (mm) 1,17 1,59 1,44	0,62	0,71	0,55	0,6	0,27
	HANCOCK MINISTON L								
	TIANCOCK WINSTON-E	UT215OCENTER Diagrams			Y(f)	(mm)		Y(f)	
	Couch - No Offset		Gantry Couch Collimator X-dev Y-dev Z-dev Long. Trans. Total	Gantry					
		Y(f)	0 0 0 -0,81 -0,84 0 0,28 -0,48 0,55	0.75 mm					
		1.00	0 45 0 -1,23 -1,01 0 0,38 -1,41 1,46						
			0 90 0 -1,11 -1 0 0,67 -1,68 1,81	u.s mm				0.27	
		7765	0 315 0 0.01 -0.71 0 0.54 0.86 0.84	0.25 mm	-0.06	Z(f) —	-01	0.27	
		0.50	0 0 00 -0,10 -1,44 0 0.87 0,13 0,88	0 mm					
			0 0 180 0.18 -0.66 0 0.07 0.48 0.49						
	100 0.50	X(f)		-0.25 mm					
	-100 -000	■ 315°	90 0 180 0 -0.19 -0.51 -0.38 0.39 0.55	-0.5 mm					
	■ 4 ■ *90*		180 0 0 -0.52 0.29 0 -0.87 0.2 0.89	~	•			5	
		-0.00	270 0 0 0 -0.05 0.27 -0.53 0.39 0.66	-0.75 mm					
			180 270 0 0.14 0.52 0 -0.2 -0.72 0.75	🔶 X(g) 0° 🔷 Y(g) 0° 📥 Total 0° 👍 Max Total					
		-1.00	180 45 0 -0.94 0.12 0 -0.75 1.12 1.35						
			180 90 0 -0.82 0.13 0 -0.45 1.39 1.47	Graphs for different types of errors					
	Required Couch	h Shift for optimal orientation (mm):	V-day and V-day are hall from hears parter in room coordinates	Gantry Sag					
		X(f) 0,18	Longitudinal and transverse are deviation of beam center from ball if ball is at isocenter						
		Y(f) 0,58	when couch = 0						
			isocenter longitudinal shift=0.580 mm. Move ball 0.58 mm toward G(+Y) to bring it to gantry isocenter	1					
	Couch - With Offset		Isocenter transverse shift=0.180 mm. Move ball 0.18 mm toward B(+X) to bring it to gantry isocenter						
		Y(f)	Transverse radius -0.481 mm = 0.5 ° transverse walkout	H =					
		1.00	Longitudinal radius -0.197 mm = 0.5 * longitudinal walkout	Beam Steering Errors					
			X(Couch) 0.184 mm from initial position of ball with couch=0	The set of					
		0.50	X(Couch) 0.850 mm from gantry isocenter						
		2012	Y(Couch) 0.309 mm from gantry iscenter						
		270° ×/0							
	-1.00 -0.04	0.50 1.00							
				Static law Errors					

Machine QA – MLC Details

HANCOCK MLC G0 Diagrams

MLC Average Deviation

Leaf Deviation Histogram

S1B Failed Leaves: 6L, 12L 24

ž

22 20 18 14 12 10 00 Deviation (mm) MLC Details after QA Sessions

.........

......

....

Machine QA – Imaging

MV Task Execution Image Registration																
Parameter			Measurement	Baseline	Differenc	e	Status	Tolerances	5							2+115
a	Scaling (mm)	.ul	0,10	0,	00	-0,10	✓ Passed	-2]	0,1	2				Imaging St.	
	Spatial resolution (lp/mm)	J	0,18	3 O,	18	0,00	✓ Passed	0.071	0121 0	18					_	
	Uniformity (%)	KV Task Execution Image Registration														
		Parameter				Measure	ment	Baseline	Difference	Status	Tolerances					- 7
a	Contrast (units)		Scaling (mm)		lı.		0,01	0,00	D	-0,01 🗸 Passed	-2	0,01] 🖞 🖸	2		
	Noise (units)		Spatial resolution (Ip/	mm)	.11		0,82	0,82	2	0,00 🖌 Passed	0,72 0,77	0,82				
-			Uniformity (%)				00.63	00.65		0.01 at Derevel			101	1,11		
Task Informatior	l.				C	BCT Tasi	k Execution	Image Reg	istration							
Execution Date:*	Phanton	A A A	Contrast (units)			Parameter					Measurement	Baseline I	Difference Sta	atus	Tolerances	
26 ago 2023 10.45	SINC INV		Noise (units)			0	Geometr	ic distortion (mr	n)		-0,32	-0,65	-0,33 🗸	Passed	-2,65	-0.32 0.35 1.35
Machine:	Approval Status: Approved by cadioli, cecilia on						Spatial n	esolution (lp/mn	n)	.t.l	0,21	0,19	-0,02 🗸	Passed	0.09 014 0.21	
		Task Informatio	on				Uniformi	ty (HU)		.ul	-29,36	-21,28	8,08	<u>Failed</u>	-26.28	-14,28
		Execution Date: 28 ano 2023 11	*	Phantoms:			Contrast	(units)			1,16	1,18	0,02 🗸	Passed	1.14	
		Machine: VERSAMO1	Approval Status:	Approval Status:		۲	Noise (u	e (units)			4,04	i 4,07 0,03 ✔ Passed	4.04 (4.0) (4.0)	4.04 4.88		
			Approved by cadioli, cecilia on 30 ago 2023 1		2023 1	۲	Air (HU)			.II	-881,58	-878,86	2,72 🗸	Passed	900 -881,58	-850
						۲	Teflon 'R	' (HU)		J	520,92	502,03	-18,89 🚦	Failed	480 (00)	520.92
						۲	Delrin 'R	' (HU)		.11	104,19	87,44	-16,75	Warning	70 (10)	104,19 110
						۲	Acrylic (I	HU)		.11	-73,94	-85,50	-11,56	Warning	-105 -95	-73.94 -65
						۲	Polystyre	ine (HU)		JI.	-185,56	-201,58	-16,02 🔺	. Warning	220 210	-185,56 -180
						۲	Low den	sity polyethy <mark>l</mark> ene	e (LDPE) (HU)	Jı ,	-228,79	-240,88	-12,09 🔺	Warning	-260 -250	-228,79 -210
						۲	Polymeth	nylpentene (PMP) (HU)	.ld	-290,97	-300,50	-9,53 🗸	Passed	-320 310	-290.97

Conclusions & Future Challenges

- Software is a useful tool for Machine QA & Patient QA follow trends during treatment;
- All connections & links for implementation works properly for multiple LINACs;
- Beam Model of each Linac was performed, some extra adjustments were requested;
- Some patient's results are being manually extracted from the SW and analysed;
- A Query Retrieve is under development for automatic extraction of results and DB construction.
- Implementation of Results in Clinical decision is still under complete
- The final goal is the beam-matching of No.4 LINACs and Automatic Calculations.....
- ... but the most important is a complete Daily Vision of the Patients Treatment in Real-Time

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Modena

"That's too much!!!"

(Praha 2009)

