Coupled groundwater-to-atmosphere simulations with the regional climate system model TSMP as a contribution to the new European CORDEX-CMIP6 ensemble

2023-09-26 I Klaus Goergen^{1,2}, Niklas Wagner^{1,2}, Stefan Poll^{1,2,3}, Carl Hartick^{1,2}, Yikui Zhang^{1,2}, Daniel Caviedes-Voullieme, and Stefan Kollet^{1,2}

¹Institute of Bio- and Geosciences (IBG-3, Agrosphere), Research Centre Jülich (FZJ), Jülich, Germany ²Centre for High-Performance Scientific Computing in Terrestrial Systems (HPSC TerrSys), Geoverbund ABC/J, Jülich, Germany ³Simulation and Data Lab Terrestrial Systems (SDLTS), Jülich Supercomputing Centre (JSC), Research Centre Jülich (FZJ), Jülich, Germany

 $k.goergen@fz-juelich.de,\ https://www.fz-juelich.de/profile/goergen_k$

CRC1502 DETECT sfb1502.de

State-of-the-art and motivation

Our interest: Terrestrial water cycle interactions and feedbacks incl. human interventions

• Intensification of the hydrological cycle under climate change with impacts on water as a resource, sustainable use, water security (e.g., Huntington, 2006, J Hydrol; Wada and Bierkens, 2014, ERL)

- Conceptually many feedback effects are understood, but the strength and sensitivity of feedbacks to changes in system state are in parts unclear
- Observed patterns of hydrological change can often be explained only insufficiently, e.g. water storage trends in Europe (e.g., Jensen et al., 2019, JGR-A)

Research questions

- What are **drivers of hydroclimatic extremes** (droughts, heatwaves) when groundwater is considered in L-A coupling; impacts on **water resources**?
- How did human water use (HWU) and land use and land cover change (LULCC) have contributed to modifications of water and energy cycles with multiple (non-)local (hydro-climatic) effects?

Slide 2

Numbers: Aeschbach-Hertig and Gleeson (2012)

Our modelling framework: TSMP

Physically based representation of transport processes and feedbacks across scales and sub-systems

Terrestrial systems modelling platform www.terrsysmp.org

- Modular coupling design
- Component models can have different resolutions
- Massively parallel
- With data assimilation option

Shrestha et al. (2014, Mon Weather Rev); Gasper et al., (2014, GMD); Kurtz et al. (2016, GMD); Hokkanen et al. (2021, Comput Geosc)

Active development towards TSMPv2: ICON-eCLM-ParFlow

IHM Surface and subsurface systems are treated as a single resource

ParFlow can also be run as a GPU variant www.parflow.org

Groundwater-to-atmosphere similations (G2A) w/ RCM+IHM

More realistic process representation and a basis for VIACS applications

Sub-surface and surface hydrodynamics are linked; IHMs can resolve km-scale heterogenity, hill slope processes

- Groundwater affects L-A coupling, land water balance, hydrometeorology in RCMs (e.g., Keune et al., 2016, JGR-A; Furusho-Percot et al., 2022, GRL; Poshyvailo et al., 2022, ESDD; Barlage et al., 2021, GRL)
- Scale-dependent feedbacks: km-scale requires 3D hydrodynamics (e.g., Barlage et al., 2021, GRL)
- Closed terrestrial water cycle: water resource investigations, incl. HWU (e.g., Hartick et al., 2021, WRR; Keune et al., 2018, GRL; Furusho-Percot et al., 2019, Sc Data)

Schematic: Condon and Maxwell (2017, HESS)

Redistribution of surface and groundwater in continuum approach, ponding / flowing water in convergence zones, evolution of river networks

Slide 4

-0.50

-1.00

GW treatment affects heatwaves, TSMP w.r.t. CORDEX RCMs

ERA-Interim evaluation runs, TSMP vs 12 EURO-CORDEX RCMs, ERA-Land, E-OBS, GLEAM (=reference)

Forschungszentrum

Human water use impacts in coupled TSMP

Impacts of HWU on atmospheric water budget and leads to changes of terrestrial water resources

HWU ensemble: no HWU (NAT) & 2 gw abstraction and irrigation datasets (Wada et al. 2016, JAMES; Siebert et al. 2010, HESS); strong annual cycle

Shown scenario: Wada et al.; for EUR-11 domain: gw abstraction≈ 50*10⁹m³/yr irrigation≈ 38*10⁹m³/yr

NAT - HWU1-n, 2003, example

JÜLICH Forschungszentrum

Keune et al. (2018, GRL)

Member of the Helmholtz Association

Climate Limited-area Modelling Community Coupled RCM ensemble in CORDEX-CMIP6

Adding an "increased complexity" ensemble to the balanced GCM-RCM matrix of EURO-CORDEX

More about CLM-Community coupled or and/or high resolution simulations

A1-P-06:

Hagemann et al. "Regional Earth System Models for CMIP6 downscaling over the EURO-CORDEX domain"

A1-P-12:

Maurer et al. "Calibration of the new ocean-atmosphere model based on ICON and NEMO for the EURO-CORDEX domain"

A2-P-01:

Ahrens et al. "On convective enhancement of Vb-events in present and warmer climate"

A2-P-22:

Poll et al. "Flux exchange over heterogeneous land surfaces"

Summary, conclusions, and outlook

Coupled RCMs w/ IHMs can simulate all states and fluxes of the terrestrial water and energy cycles, G2A

Through L-A coupling, groundwater processes and 3D hydrodynamics affect hydroclimatic extremes and water resources, including memory effects

Impacts of **human interventions** and their **impact on the water cycle can be simulated**, making novel information available for multiple **VIACS applications**

A range of coupled simulations will be contributed through the CLM-Community to CORDEX-CMIP6, including ongoing TSMP (COSMO5-01-CLM3-5-0-ParFlow3-12-0) CORDEX-CMIP6

Next steps

- Analyses on the impact of HWU, and 1D vs 3D hydrodynamics for 30-year evaluation time spans
- Evolution of European water resources in climate change projections (challenge: long subsurface spinups needed)
- Mid-term (enhanced model systems): transient land use and land cover change, ocean coupling, biogeochemistry

Additional slides

Cited references

- Aeschbach-Hertig, W., & Gleeson, T. (2012). Regional strategies for the accelerating global problem of groundwater depletion. *Nature Geoscience*, 5(12), 853-861. <u>https://doi.org/10.1038/ngeo1617</u>
- Barlage, M., Chen, F., Rasmussen, R., Zhang, Z., & Miguez-Macho, G. (2021). The Importance of Scale-Dependent Groundwater Processes in Land-Atmosphere Interactions Over the Central United States. Geophysical Research Letters, 48(5), e2020GL092171. <u>https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL09217</u>
- Condon, L. E., & Maxwell, R. M. (2017). Systematic shifts in Budyko relationships caused by groundwater storage changes. Hydrol. Earth Syst. Sci., 21(2), 1117-1135. <u>https://hess.copernicus.org/articles/21/1117/2017/</u>
- Hokkanen, J., Kollet, S., Kraus, J., Herten, A., Hrywniak, M., & Pleiter, D. (2021). Leveraging HPC accelerator architectures with modern techniques hydrologic modeling on GPUs with ParFlow. *Computational Geosciences*. <u>https://doi.org/10.1007/s10596-021-10051-4</u>
- Huntington, T. (2006). Evidence for intensification of the global water cycle: Review and synthesis. *Journal of Hydrology, 319*(1), 83-95. http://doi.org/10.1016/j.jhydrol.2005.07.003
- Jensen, L., Eicker, A., Dobslaw, H., Stacke, T., & Humphrey, V. (2019). Long-Term Wetting and Drying Trends in Land Water Storage Derived From GRACE and CMIP5 Models. *Journal of Geophysical Research: Atmospheres, 124*(17-18), 9808-9823. <u>https://doi.org/10.1029/2018JD029989</u>
- Keune, J., Gasper, F., Goergen, K., Hense, A., Shrestha, P., Sulis, M., & Kollet, S. (2016). Studying the influence of groundwater representations on land surfaceatmosphere feedbacks during the European heat wave in 2003. Journal of Geophysical Research: Atmospheres, 121(22), 13301-13325. <u>https://dx.doi.org/10.1002/2016JD025426</u>
- Keune, J., Sulis, M., Kollet, S., Siebert, S., & Wada, Y. (2018). Human Water Use Impacts on the Strength of the Continental Sink for Atmospheric Water. Geophysical Research Letters, 45, 4068-4076. <u>http://doi.org/10.1029/2018GL077621</u>
- Klein Goldewijk, K., Beusen, A., Doelman, J., & Stehfest, E. (2017). Anthropogenic land use estimates for the Holocene HYDE 3.2. Earth Syst. Sci. Data, 9(2), 927-953. <u>https://essd.copernicus.org/articles/9/927/2017/</u>
- Kurtz, W., He, G., Kollet, S., Maxwell, R., & Vereecken, H. a. (2016). {TerrSysMP-PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface-subsurface model}. *Geoscientific Model Development*, 9(4), 1341-1360. <u>http://doi.org/10.5194/gmd-9-1341-2016</u>

Cited references, cont'd

- Furusho-Percot, C., Goergen, K., Hartick, C., Kulkarni, K., Keune, J., & Kollet, S. (2019). Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation. Scientific Data, 6(320). <u>https://www.nature.com/articles/s41597-019-0328-7</u>
- Furusho-Percot, C., Goergen, K., Hartick, C., Poshyvailo-Strube, L., & Kollet, S. (2022). Groundwater Model Impacts Multiannual Simulations of Heat Waves. Geophysical Research Letters, 49(10), e2021GL096781. <u>https://doi.org/10.1029/2021GL096781</u>. <u>https://doi.org/10.1029/2021GL096781</u>.
- Hartick, C., Furusho-Percot, C., Goergen, K., & Kollet, S. (2021). An Interannual Probabilistic Assessment of Subsurface Water Storage Over Europe, using a Fully Coupled Terrestrial Model. Water Resources Research, 57, e2020WR027828. <u>https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR027828</u>
- Poshyvailo-Strube, L., Wagner, N., Goergen, K., Furusho-Percot, C., Hartick, C., & Kollet, S. (2022). Groundwater in terrestrial systems modelling: a new climatology of extreme heat events in Europe. *Earth System Dynamics Discussions, 2022*, 1-25. <u>https://esd.copernicus.org/preprints/esd-2022-53/</u>
- Schlemmer, L., Schär, C., Lüthi, D., & Strebel, L. (2018). A Groundwater and Runoff Formulation for Weather and Climate Models. *Journal of Advances in Modeling Earth Systems*, 10(8), 1809-1832. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017MS001260
- Shrestha, P., Sulis, M., Masbou, M., Kollet, S., & Simmer, C. (2014). A scale-consistent Terrestrial Systems Modeling Platform based on COSMO, CLM, and ParFlow. Monthly Weather Review, 142(9), 3466-3483. <u>http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-14-00029.1</u>
- Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., D\"oll, P., & Portmann, F. T. (2010). Groundwater use for irrigation a global inventory. *Hydrology and Earth System Sciences*, 14(10), 1863-1880. <u>https://www.hydrol-earth-syst-sci.net/14/1863/2010/</u>
- Wada, Y., & Bierkens, M. F. P. (2014). Sustainability of global water use: past reconstruction and future projections. *Environmental Research Letters, 9*(10), 104003. https://dx.doi.org/10.1088/1748-9326/9/10/104003
- Wada, Y., de Graaf, I. E. M., & van Beek, L. P. H. (2016). High-resolution modeling of human and climate impacts on global water resources. *Journal of Advances in Modeling Earth Systems*, 8(2), 735-763. <u>https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015MS000618</u>
- Zipper, S. C., Keune, J., & Kollet, S. J. (2019). Land use change impacts on European heat and drought: remote land-atmosphere feedbacks mitigated locally by shallow groundwater. 14(4), 044012. <u>https://doi.org/10.1088%2F1748-9326%2Fab0db3</u>

Impact of 3D vs 1D hydrodynamics

2023-09-25 to 29, ICTP, Trieste Goergen et al. | ICRC-CORDEX 2023 |

Spatial distribution of groundwater abstraction and irrigation

Daily estimates, large uncertainties, Wada et al. (2016) (HWU1) and Siebert et al. (2010) (HWU2) datasets

Goergen et al. | ICRC-CORDEX 2023 | 2023-09-25 to 29, ICTP, Trieste

Slide 13

Forschungszentrum

HWU impact on continental sink for atmospheric water

Strength of the continental moisture sink is measured by atmospheric divergence: C_{SI} = -div(Q) = P-ET

Slide 14

Forschungszentrum

Contribution to subsurface water storage change

continental water

decrease in

Changes in strength of the continental sink mainly manifest themselves as continental storage changes

HWU induced C_{SI} [mm]

Atmospheric feedbacks consistent with water use; decrease of C_{SI} in arid watersheds, increase in ET

Atmospheric feedbacks to human water use are drivers of subsurface water storage changes, rather than net water use

Keune et al. (2018, GRL)

Use integrated hydrological models in coupled RCSMs

3D subsurface hydrodynamics and overland flow vs "free drainage" approach (here: ParFlow IHM w/ TSMP)

TSMP: CCLM5-01-CLM3-5-0-ParFlow3-12-0 (OASIS3-MCT2)

Keune et al. (2016, JGR)

Added value of explicit groundwater treatment

• Groundwater affects L-A coupling, land water balance, hydrometeorology

in RCMs (e.g., Keune et al., 2016, JGR-A; Furusho-Percot et al., 2022, GRL; Poshyvailo et al., 2022, ESDD; Barlage et al., 2021, GRL; Schlemmer et al., 2018, JAMES)

- Closed terrestrial water cycle: water resource investigations, incl. HWU (e.g., Hartick et al., 2021, WRR; Keune et al., 2018, GRL; Furusho-Percot et al., 2019, Sc Data)
- Scale-dependent feedbacks, needed: 3D hydrodynamics w/ km-scale (e.g., Barlage et al., 2021, GRL)

Example results from 12km TSMP ERA-Interim simulations (2)

Impacts of LULCC on heat (and drought) in Europe (Zipper et al., 2019, ERL)

Analyses for 2003 JJA

Impact of subsurface hydrodynamics is resolution dependent

GW processes modify land-surface water balance and hydrometeorology: Barlage et al. (2021, GRL)

New TSMP setup for CORDEX-CMIP6, external parameters

Improved hydrogeology, spinup: loop x3 over 1970-1979 w/ fully coupled model

Member of the Helmholtz Association

Drought Conditions Accelerate the Energy Cycle over Continental Europe in a Fully Coupled Terrestrial Model

Carl Hartick^{1,2}, Carina Furusho-Percot^{1,2}, Klaus Goergen^{1,2}, Stefan Kollet^{1,2} and Martyn P. Clark³ ¹Institute of Bio- and Geosciences (Agrosphere, IBG-3), Research Centre Jülich, Germany ²Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany ³University of Saskatchewan Coldwater Laboratory, Canmore, Canada

Motivation: Drought period 2018-2020

Hartick et al. (2022, GRL)

Model: TSMP

Ensemble simulations influenced by drought conditions

-25

-50

fall

winter

Season experiment 2018/19

spring

summer

-50

fall

winter

Season experiment 2011/12

spring

summer

-25

-50

fall

winter

Season experiment 2019/20

spring

summer

Results and Conclusion

Changes in the energy budget and cloud properties

Drought conditions accelerate the energy cycle via altered clouds

c.hartick@fz-juelich.de

Added value of incorporating HWU

Validation study, Keune et al. 2019 JAMES

Goergen et al. | ICRC-CORDEX 2023 | 2023-09-25 to 29, ICTP, Trieste

Slide 23

Forschungszentrum