

Tropical cyclone changes in convectionpermitting regional climate projections: a study over the Shanghai region

E. Buonomo, N. Savage, G. Dong, B. Becker, R.G. Jones, Z. Tian, L. Sun

Met Office High Impact Climate Projection for Shanghai

Figure 14.17 (IPCC AR5 WG1, 2013) Climate Change for the end of the century (2080-2100), A1B, various modelling sources.

Most recent update: Knutson at al (WMO expert team, BAMS (2020) for 2K global temperature increase) 4km CPM projections used in Ke et al, Natural Hazard (2021) for coastal flooding **Met Office**

Double nesting experiment CORDEX setup

© Crown Copyright 2018, Met Office

Met Office Double Nesting Setup driving GCM: HadGEM2-ES

Driving model	Model System		
	Outer Domain (Mesoscale)	Inner Domain (CPM scale)	Simulation Period
HadGEM2-ES	HadREM3-GA7.05 12km	HadREM3-RA1T Grid space 4km	Historical : 1981-2000 RCP8.5 :2080-2099

SST update daily time-varying ghg concentrations MACv2-SP, scenario dependent aerosol radiation and cloud effects. Lbc update: RCM, 6-hourly; CPM, 3-hourly 4km CPM projections used in Ke et al, Natural Hazard (2021) for coastal flooding

Outer domain (orange): 12km resolution, RCM Inner domain (blue): 4km, CPM

Large Scale Environmental Conditions

Met Office HadGEM2-ES SST, JJA

Climate Change Response: Local SST Increase ~ 3.5K Global Temperature Increase ~ 4.8K

MetOffice HadGEM2-ES Environmental Wind Shear, JJA

Difference Horizonal Wind at 250hPa and 850hPa Contour levels: number of days with average wind shear < 10m/s

Met Office RCM large scale consistency with HadGEM2-ES

Similar results for temperature, other environmental variables not considered since strongly affected by local variability (e.g., relative vorticity) CPM perfectly consistent with driving RCM.

Results from the Double Nesting Experiment

Diurnal cycle rainfall **Met Office** hour of peak rainfall, historical, JJA

8 10 12 14 16 18 20 22 24 Ó 6

Observations

8 10 12 14 16 18 20 22 24 Ó. 6 à

12km RCM

HadREM3-RA1T

Tropical Cylones

Met Office Intensity of Tropical Cyclones

Intensity – Depth Scatteplot, max wind speed in region of interest (blue: historical; red: RCP8.5) Systematic improvement for 4km CPM, but far from observed relationship

Generalised Pareto Distributon fits of Intensity. Obs (left panel), 12km RCM (middle panel), 4km CPM (right panel) Blue: historical; Red, RCP8.5 No significant change in average intensity but a reduction of return period for more extreme events (i.e., 4km CPM the 10 year event becomes 1 year event in the future)

Precipitation from Tropical Cyclones Met Office

12km RCM

Precipitation Patterns for Matching Cyclones

Rainfall distribution from composite of tracks in the region of interest. Blue: historical; Red: RCP8.5

RCM and CPM project increases in total and peak rainfall above the Clausius-Clapeyron limit.

Met Office

For more information please contact

www.metoffice.gov.uk

erasmo.buonomo@metoffice.gov.uk

www.metoffice.gov.uk