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• Current state and achievements of CORDEX ESD activities
• Future Challenges 

1. Methodological advances (e.g. multivariate)
2. Machine Learning for ESD
3. Intercomparison/validation experiments 
4. Data and infrastructure 
5. Distillation of actionable information

• Last mile on bridging climate science with society needs
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• Current state and achievements of CORDEX ESD activities
• Future Challenges 

1. Methodological advances (e.g. multivariate)
2. Machine Learning for ESD
3. Intercomparison/validation experiments
4. Data and Infrastructure 
5. Distillation of actionable information (sessions B and C)

• Last mile on bridging climate science with society needs (sessions B and C)
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The downscaling ecosystem

Machine Learning: Data-driven modeling and 
prediction techniques

Random 
forests

Kernels and 
SVMs

Deep 
learning

Neural 
networks

Deep downscaling is a very active topic that takes 
advantage of the rapid developments in the field and 
brings new members (fresh air) to the community.

This momentum needs to be consolidated:
• Strengthening collaboration with ESD (this conference)
• Coordination with ESD protocols
• Gaining trust (methods are seen as black-boxes)



y = f(x)

Large-scale
predictors Model Calibration and/or Prediction

High-resolution 
predictands

Feature 
selection/reduction

x (ERA5, 1°) y (E-OBS, 0.1°)

T(1000hPa),…, T(500hPa);
Z(1000hPa),…, Z(500hPa);
H(1000hPa),…, H(500hPa);
U(1000hPa),…, U(500hPa);
V(1000hPa),…, V(500hPa);

Which domain? 

Which variables? 

Most applications of statistical downscaling are on small domains.

Predictor 
selection is a 
bottleneck for 

continental-wide 
applications:

NNs, EOFs, ...

Gutiérrez et al. (2013) 
10.1175/JCLI-D-11-00687.1Coordination with ESD protocols

https://doi.org/10.1175/JCLI-D-11-00687.1


Large-scale
predictors Model Calibration and/or Prediction

High-resolution 
predictands

Feature 
selection/reduction

Convolutional Neural Networks + Deep Learning technological developments

Large-scale 
predictors Model Calibration and/or Prediction High-resolution 

predictands

…similar experiences in other 
applications with successful results

Standard Statistical Downscaling

Predictor selection is performed 
automatically during the trainning

LeCun et al. (1995)

Coordination with ESD protocols



Baño-Medina et al. (2022) 
10.5194/gmd-15-6747-2022

DeepESD_vEE (ERA-Interim – E-OBS)

Coordination: CORDEX domains (EUR-44)

https://doi.org/10.5194/gmd-15-6747-2022


Gaining trust: Interpretability

Baño-Medina et al. (2020) https://doi.org/10.5194/gmd-13-2109-2020

Large-scale 
predictors Model Calibration and/or Prediction High-resolution 

predictands

https://doi.org/10.5194/gmd-13-2109-2020


A saliency map is a spatial 
representation of the 

influence of the inputs in 
the model output.

Gaining interpretability for the models
• What predictor variables are the most important ones?            
• Do CNNs perform automatic spatial selection of features?

González-Abad et al. (submitted) 
10.48550/arXiv.2208.05424
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Explainable Artificial Intelligence (XAI)

In the case of downscaling, saliency maps 
allow identifying the relevant predictor 
variables and the spatial regions of 
influence, thus facilitating diagnostic and 
explainability of the downscaled results. 

We yse a gradient-based technique known as Integrated Gradients (IG;
Sundararajan et al., 2017), since it is known to overcome inherent
problems of standard gradient-based methods —e.g. gradient saturation
(Glorot & Bengio, 2010)— and has been used in other climate-CNN
applications (Kondylatos et al., 2022).

https://doi.org/10.48550/arXiv.2208.05424
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- Wind velocity, 
especially the 

meridional 
component at 
700 and 850 
hPa, together 

with the 
specific 

humidity and 
the 

geopotential 
height at 1000 
hPa seem the 

most 
informative to 

downscale 
over Rome.

- For the Alps, 
zonal velocity 

is also relevant.

- Air temperature 
at 1000 hPa is 

the most 
relevant 
variable

- This 
predominancy 
of Tº at 1000 
hPa is also 

observed for 
the other 
locations 

studied (see 
the 

manuscript).

- The relevant 
spatial domain is 
located around 
the location of 

interest.   



Questions (machine learning):
• How do we ensure/evaluate that the automatization of predictor 

selection and feature extraction captures the right physical 
phenomena needed for downscaling? [physical constrains]

• How do we ensure/evaluate that machine learning methods produce 
plausible projections generalizing to future climates? [experimental 
protocols]

• Can we advance in the understanding of machine learning methods 
to gain interpretability of results? [XAI]

• Can we build RCM emulators suitable for certain tasks 
(e.g. filling-up temporal gaps or the SCEN/GCM/RCM 
matrix, to create large ensembles over areas poorly 
covered by RCM runs, or for CPRCM runs)?



Thank you for your attention!


