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e Current state and achievements of CORDEX ESD activities

* Future Challenges
1. Methodological advances (e.g. multivariate)
2. Machine Learning for ESD
3. Intercomparison/validation experiments

4. Data and Infrastructure
5. Distillation of actionable information (sessions B and C)

* Last mile on bridging climate science with society needs (sessions B and C)



OBSERVATIONS

The downscaling ecosystem

Dynamical Downscaling: Regional Climate Models
(RCM) driven by a GCM at the boundaries (CP, 3km)

Statistical Downscaling (ESD): Data-driven models
linking large-scale predictors and observed predictands
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Hybrid: Combining them

Stochastic downscaling of gridded precipitation to spatially coherent subgrid
precipitation fields using a transformed Gaussian model

Matthew Switanek, Douglas Maraun B4, Emanuele Bevacqua

Climate impact models often require unbiased point-scale observations, but climate
models typically provide biased simulations at the grid scale. While standard bias
adjustment methods have shown to generally perform well at adjusting climate model
biases, they cannot overcome the gap between grid-box and point scale. To overcome
this limitation, combined bias adjustment and stochastic downscaling methods have
been developed. These methods, however, are single-site methods and cannot
represent spatial dependence. Here we propose a multisite stochastic downscaling
method that can be applied to bias-adjusted climate model output for generating spatially
coherent time series of daily precipitation at multiple stations, conditional on the driving
climate model. The method is based on a transformed truncated multivariate Gaussian
model and can also be used to downscale to a full field at finer-grid ...
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Climate Dynamics (2023) 60:1751-1779
https://doi.org/10.1007/s00382-022-06343-9

Regional climate model emulator based on deep learning: concept
and first evaluation of a novel hybrid downscaling approach

Antoine Doury' © . Samuel Somot' - Sebastien Gadat? - Aurélien Ribes' - Lola Corre®



OBSERVATIONS

The downscaling ecosystem

Dynamical Downscaling: Regional Climate Models
(RCM) driven by a GCM at the boundaries (CP, 3km)

Statistical Downscaling (ESD): Data-driven models
linking large-scale predictors and observed predictands
Perfect MOS Weather
prognosis (bias adjustment) Generator

Hybrid: Combining them

Emulators (GCM = RCM)

Machine Learning: Data-driven modeling and
prediction techniques

Random Kernels and Neural
forests SVMs networks



OBSERVATIONS

The downscaling ecosystem

Dynamical Downscaling: Regional Climate Models
(RCM) driven by a GCM at the boundaries (CP, 3km)

Statistical Downscaling (ESD): Data-driven models
linking large-scale predictors and observed predictands
Perfect MOS Weather
prognosis (bias adjustment) Generator

Hybrid: Combining them

Emulators (GCM = RCM)

Machine Learning: Data-driven modeling and
prediction techniques

Random Kernels and Neural Deep
forests SVMs networks learning

Deep downscaling is a very active topic that takes
advantage of the rapid developments in the field and
brings new members (fresh air) to the community.

Documents

120

100

00
-

o)
-

-—
-

20

0

Scopus

Super-resolution (2022): 44

2010 2012 2014 2016 2018 2020 2022



The downscaling ecosystem

This momentum needs to be consolidated:

» Strengthening collaboration with ESD (this conference)
» Coordination with ESD protocols

» Gaining trust (methods are seen as black-boxes)

Machine Learning: Data-driven modeling and
prediction techniques

Random Kernels and Neural Deep
forests SVMs networks learning

Deep downscaling is a very active topic that takes
advantage of the rapid developments in the field and
brings new members (fresh air) to the community.




Coordination with ESD protocols e A BT

Large-scale Feature High-resolution
predictors selection/reduction predictands

x (ERAS5, 1°) y (E-OBS, 0.1°)
w y = f(x) —

Which domain?

Model Calibration and/or Prediction

Precliictc.)r Which variables?
selection is a T(1000hPa)...., T(500hPa);
bottleneck for Z(1000hPa),.. Z(500hPa);

continental-wide H(1000hPa),..., H(500hPa);

S U(1000hPa),..., U(500hPa);

applications: V(1000hPa)...., V(500hPa)
NNs, EOFs,

Most applications of statistical downscaling are on small domains.


https://doi.org/10.1175/JCLI-D-11-00687.1

Coordination with ESD protocols

Large-scale Feature : : - High-resolution
: : : Model Calibration and/or Prediction :
predictors selection/reduction predictands

Standard Statistical Downscaling

Convolutional Neural Networks + Deep Learning technological developments
e ————————————————————————————————————————————

Segmentation
: PV N W,

Large-scale : : _ High-resolution
oredictors Model Calibration and/or Prediction oredictands
Predictor selection is performed Computer Vision Tasks
aUtOmat|CaIIy dunng the tralnﬂlng Classification ffjﬁ;i;:ttiizﬂ Object Detection nElange

...SImilar experiences in other
applications with successful results

CAT, DOG, DUCK CAT, DOG, DUCK

LeCun et al. (1995)



Coordination: CORDEX domains (EUR-44)

Geosci. Model Dev., 15, 6747-6758, 2022 Geoscientific
https://do1.org/10.5194/gmd-15-6747-2022 Model Development

Downscaling multi-model climate projection ensembles with deep
learning (DeepESD): contribution to CORDEX EUR-44

Jorge Baiio-Medina'!, Rodrigo Manzanas®-, Ezequiel Cimadevilla!, Jesiis Fernindez', Jose Gonzélez-Abad',
Antonio S. Cofifio', and José Manuel Gutiérrez’
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Name Institution Spatial resolution ,‘"_3
CanESM2 (Christian et al., 2010) Canadian Centre for Climate Modelling and Analysis (2.81°,2.79%)
CNRM-CMS (Voldoire et al., 2013) Centre National de Recherches Météorologiques and (1.4°,1.4°)

Centre Européen de Recherche et de Formation Avancée
MPI-ESM-MR (Miiller et al., 2018) Max-Planck-Institut fiir Meteorologie (1.87°, 1.87%)
MPI-ESM-LR (Miiller et al., 2018) Max-Planck-Institut fiir Meteorologie (1.87°, 1.87°)
NorESM1-M (Bentsen et al., 2013) Norwegian Climate Center (2.5°,1.99)
GFDL-ESM2M (Dunne et al., 2013) National Oceanic and Atmospheric Administration (2.5°,2.029) '

Geophysical Fluid Dynamics Laboratory
EC-EARTH (Doblas Reyes et al., 2018)  European-wide consortium (1.12°, 1.12°)
IPSL-CM5A-MR (Dufresne et al., 2013) Institut Pierre-Simon Laplace Climate Modelling Center (2.5°,1.27°)

Precipitation Temperature
(mean) (mean)
GCM RCM DeepESD GCM RCM DeepESD
(8 members) (11 members) (8 members) (8 members) (11 members) (8 members)

Ensemble
(mean)
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ERA-Interim (0.75°) GCM (x°)
Interpolation «--- (2°grid) ---» Interpolation
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v v O
Standardization -« sseeeeaiannn » Standardization g
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| . £,
Predictand | Predictor Predictor (8
CNN > CNN
Downscaling Model Downscaling Model
Downscaled results |

Bano-Medina et al. (2022)
10.5194/gmd-15-6747-2022

DeepESD vEE (ERA-Interim — E-OBS)

Earth System Grid Federation


https://doi.org/10.5194/gmd-15-6747-2022

Gaining trust: Interpretability

Large-scale
predictors

Model Calibration and/or Prediction High-resolution

predictands

inputs: convolutions outputs:
Large-scale 3 E-OBS precip.
Predlctors (0.5° resolution)
(2° resolution)
ST ‘! : : | A
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Bano-Medina et al. (2020) https://doi.org/10.5194/gmd-13-2109-2020



https://doi.org/10.5194/gmd-13-2109-2020

Gaining interpretability for the models

» What predictor variables are the most important ones?
Do CNNs perform automatic spatial selection of features?

Explainable Artificial Intelligence (XAl)

A saliency map is a spatial
representation of the
influence of the inputs in
the model output.

In the case of downscaling, saliency maps
allow identifying the relevant predictor
variables and the spatial regions of
influence, thus facilitating diagnostic and
explainability of the downscaled results.

We yse a gradient-based technique known as Integrated Gradients (IG;
Sundararajan et al., 2017), since it is known to overcome inherent
problems of standard gradient-based methods —e.g. gradient saturation
(Glorot & Bengio, 2010)— and has been used in other climate-CNN
applications (Kondylatos et al., 2022).
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https://doi.org/10.48550/arXiv.2208.05424
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TEMPERATURE

- Air temperature

at 1000 hPa is
the most
relevant
variable

- This
predominancy
of T° at 1000
hPa is also
observed for
the other
locations
studied (see
the
manuscript).

- The relevant
spatial domain is
located around
the location of
Interest.

PRECIPITATION

- Wind velocity,
especially the
meridional
component at
/700 and 850
hPa, together
with the
specific
humidity and
the
geopotential
height at 1000
hPa seem the
most
informative to
downscale
over Rome.

- For the Alps,
zonal velocity
IS also relevant.
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Questions (machine learning):

 How do we ensure/evaluate that the automatization of predictor
selection and feature extraction captures the right physical
phenomena needed for downscaling? [physical constrains]

 How do we ensure/evaluate that machine learning methods produce
plausible projections generalizing to future climates? [experimental
protocols]

» Can we advance in the understanding of machine learning methods
to gain interpretabillity of results? [XAI]

» Can we build RCM emulators suitable for certain tasks
(e.q. filling-up temporal gaps or the SCEN/GCM/RCM
matrix, to create large ensembles over areas poorly
covered by RCM runs, or for CPRCM runs)?




Thank you for your attention!



