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What’s the Problem?
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• Dynamical are very expensive

• Due it’s expense, only several 
GCMs are often selected for 
dynamical downscaling

• We risk under sampling the 
distribution of possible climate 
outcomes

• We develop an AI-surrogate RCM 
emulator
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What is an Emulator?
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• They are trained in a 
feedback loop to 
optimize an objective 
function (Content loss).

• An Emulator Training a 
surrogate model that 
“emulates” the function 
of RCM at fraction of the 
computational cost. 

• Other benefits (e.g., 
Sparse observations, 
large amounts of 
training).

DL
Model



Challenges of Regression Approaches e.g. Vosper et al., (2023)

Regression Model

• Many RCM emulator / SR 
studies train a DL model 
to map from LR inputs 
(X) -> HR obs (y)

• Low resolution (LR) input 
is coarsened HR obs



Deep Learning Challenges Vosper et al., (2023)

Regression Model

• DL regression-based 
approaches “smooth” 
the extremes and high-
frequency detail.

Best Estimate by 
Regression model

Generative Model



𝒚𝒑𝒓𝒆𝒅
“Synthetic”
Precipitation
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Generative Adversarial Networks
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Loss = Content Loss + 𝜆! Adversarial Loss

Loss = Adversarial Loss

𝑋 (GCM) Random perturbation 
of the GCM boundary conditions

How realistic is the synthetic data?
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Model Training

• Perfect: Training a DL model 
from coarse resolution RCM to 
RCM fields

• Imperfect: GCM directly to RCM 
fields

• The Imperfect framework 
represents the true function of 
an RCM.

• We train our GAN on 85 years 
of ACCESS-CM2 SSP370 (2015-
2100) daily fields. 



A New Training Framework

• Perfect framework is 
easier to train

• Inconsistencies between 
the GCM and RCM outputs 
make it challenging to 
train a model.

• This can affect the 
relationships learnt by the 
model

Challenging Problem

Generator



A New Training Framework

• In our Modified 
Framework we achieve a 
25% lower error than the 
Imperfect

• Model trained in the 
imperfect would learn 
spurious features and 
poorly generalized. 

• We train both a GAN and  
a UNET as a benchmark. Challenging Problem

Modified Framework

Pretrain in 
the Perfect 
Framework

Fine-tune in 
the Imperfect 
Framework

Generator
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Evaluation
• GANs can downscale a 

scenario from a GCM in less 
than 5 minutes on a A100GPU. 

• UNETs tend to “smear” out 
precipitation and often 
underestimate extreme events.

• GANs can generate realistic 
spatial structures of daily 
precipitation, with consistent 
statistics.  

• GANs can downscale a 
scenario from a GCM in less 
than 5 minutes on a A100GPU. 

• UNETs tend to “smear” out 
precipitation and often 
underestimate extreme events.

• GANs can generate realistic 
spatial structures of daily 
precipitation, with consistent 
statistics.  



Sub-daily Precipitation Generation
GAN CCAM
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Evaluation: Test Performance
GANs can better capture the 
spatial patterns and distribution of 
precipitation 

GANs better capture the 
distribution of precipitation 
extremes

• 10 years (2090-2100) of 
ACCESS-CM2 was reserved for validation
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End-of-Century RX1Day trends (EC-Earth3)

• All UNETs and “Perfect” 
framework models 
underestimate out-of-sample 
future RX1Day changes.

• The imperfect training 
framework can better capture 
extremes in comparison to 
other methods

• Other metrics such as the 
climate change signal are well 
preserved all Emulators



Conclusions
• GANs better capture the spatio-

temporal variability of rainfall in 
comparison to regressive approaches. 

• GANs can better resolve the extremes 
of precipitation (RX1Day)

• Training in two-stages results in 
better out-of-sample performance for 
capturing extremes. 

• We can apply our model to many 
GCMs

We want to apply our methods to other 
domains!

Contact: Neelesh.rampal@niwa.co.nz



(b) Generator Architecture

𝑼,𝑽, 𝑸, 𝑻
(250hPa,850hPa) 

23 x 26 x 8

23 x 26 x 256

𝑵 𝟎, 𝟏
23 x 26 x 256

𝑵 𝟎, 𝟏
46 x 52 x 128

46 x 52 x 128

92		x 104 x 64

184		x 208 x 32 172		x 179 x 1

𝑿 (GCM)
&𝒀𝒑𝒓𝒆𝒅

(RCM)



Training Data

2020 2030 2040 2050 2060 2070 2080 2090 2100

Test Train

ACCESS-CM2
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• We train on daily averaged prognostic fields 
from ACCESS-CM2 (31000 days). 

• ACCESS-CM2 is re-gridded to a resolution 
of 1.5°.

• We use 𝑈, 𝑉, 𝑄, 𝑇 as predictor variables at 
two pressure levels. 

Training Data



ML RCM Emulator

30 GCMs (~100km) from the 
CMIP6 archive are selected

GCMs are “dynamically 
downscaled” with an RCM

to 12km

Trained Emulator 
is applied to the 

GCM outputs



Extreme Events in ERA5 (Training time)
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End-of-Century RX1Day trends (EC-Earth3)
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Evaluation
• GANs can downscale a 

scenario from a GCM in less 
than 5 minutes on a A100GPU. 

• UNETs tend to “smear” out 
precipitation and often 
underestimate extreme events.

• GANs can generate realistic 
spatial structures of daily 
precipitation, with consistent 
statistics.  
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DJF

CCAM

GAN

JJA

CC Signal: ACCESS-CM2 (In sample)

• Climate Change Signal is the % 
change in End-of-century 
precipitation (2080-2099) 
relative to the historical period 
(1986-2005)

• The imperfect framework GAN 
nearly perfectly conserves the 
CC signal. 
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Out of Sample 
(EC-Earth)

• All methods reproduce 
CCAMs CC signal accept 
during MAM.

• UNETs CC signal is too 
“smooth”.

• During MAM there is 
poor agreement 
between EC-Earth3 and 
CCAMs CC signal


