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What’s the Problem? -
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* We develop an Al-surrogate RCM
emulator



What is an Emulator?

* They are trained in a

feedback loop to X DL :

optimize an objective GCM/RCM Model oL
. / le (1

function (Content loss). g;gg;jjt,i;,”m ode Model

* An Emulator Training a
surrogate model that
“emulates” the function
of RCM at fraction of the
computational cost.

* Other benefits (e.g.,
Sparse observations,
large amounts of Y 4y Ceal CCAM

training). Precipitation




Challenges of Regression Approaches « wswereta. (025

* Many RCM emulator /SR | input
studies train a DL model m

to map from LR inputs
(X) -> HR obs (y)

100

70

50

40

30

_/

< Regression Model

* Low resolution (LR) input
is coarsened HR obs

HR obs

& -
1 A ]
a ! .
|
J -1
f |
" o — .
St 8
. B

Vayu (2019; NI) Ursula (1998; SP) Brendan (1985; WP)




Deep Learning Challenges Vosperet al, (2023

* DL regression-based
approaches “smooth”
the extremes and high-
frequency detail.
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Generative Adversarial Networks

A; = 0 is Regressive

Random perturbation
of the GCM boundary conditions (UN E T)

How realistic is the synthetic data?
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Regression Generative
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Perfect Framework Imperfect Framework
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* Perfect: Training a DL model
from coarse resolution RCM to
RCM fields

* Imperfect: GCM directly to RCM |
fields

Deep Learning
Model Model

* The Imperfect framework

represents the true function of
an RCM.

High-resolution
target
(~12km)

* We train our GAN on 85 years
of ACCESS-CM2 SSP370 (2015-
2100) daily fields.




A New Training Framework

Imperfect Framework

e Perfect framework is
easier to train

* Inconsistencies between
the GCM and RCM outputs
make it challenging to
train a model.

* This can affect the
relationships learnt by the

model

Generator

Challenging Problem




A New Training Framework

Imperfect Framework Modified Framework

* In our Modified
Framework we achieve a
25% lower error than the
Imperfect

Fine-tune in
the Imperfect
Framework

* Model trained in the
imperfect would learn
spurious features and

poorly generalized.
Generator /

e We train both a GAN and S
a UNET as a benchmark.

Pretrain in
the Perfect
Framework

Challenging Problem
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e @GANs can downscale a

scenario from a GCM in less
than 5 minutes on a A100GPU.

e UNETSs tend to “smear” out

precipitation and often
CCAM (12km) EC-Earth3 (70km)

underestimate extreme events. =, .

 GANSs can generate realistic
spatial structures of daily
precipitation, with consistent
statistics.
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Sub-daily Precipitation Generation

GAN

2097-01-01 T06:00

= X MR

CCAM

2097-01-01 T06:00

2 I
Precipitation (mm)




Evaluation: Test Performance

Power Spectral Density

10 years (2090-2100) of
ACCESS-CM2 was reserved for validation

GANSs can better capture the
spatial patterns and distribution of

GANSs better capture the
distribution of precipitation

precipitation extremes
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End-of-Century RX1Day trends (EC-Earth3)

All UNETs and “Perfect”

framework models
underestimate out-of-sample

future RX1Day changes.

The imperfect training
framework can better capture
extremes in comparison to
other methods

Other metrics such as the
climate change signal are well
preserved all Emulators
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Conclusions
We want to apply our methods to other

GANs better capture the spatio- domains!
temporal variability of rainfall in
comparison to regressive approaches.

GANSs can better resolve the extremes
of precipitation (RX1Day)

Training in two-stages results in
better out-of-sample performance for
capturing extremes.

We can apply our model to many
GCMs Contact: Neelesh.rampal@niwa.co.nz



(b) Generator Architecture

@ convolution
@ decovlution

Ypred
(RCM

23x 26 x256

46 x 52 x 128

92 x 104 x 64

/ '

23x 26 x8 184 x 208 x32 172 x 179 x 1

uv,QrT
(250hPa,850hPa)

N(0,1) N(0,1)
23x 26 x 256 46 x 52 x 128



Training Data
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Training Data

* We train on daily averaged prognostic fields
from ACCESS-CM2 (31000 days).

 ACCESS-CM2 is re-gridded to a resolution
of 1.5°.

* Weuse U,V,Q, T as predictor variables at
two pressure levels.




ML RCM Emulator

30 GCMs (~100km) from the
CMIP6 archive are selected

Atk
Al :.—;°
T3

Ak,

GCMs are “dynamically
downscaled” with an RCM
to 12km

Trained Emulator

is applied to the
GCM outputs



Extreme Events in ERAS (Training time)
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End-of-Century RX1Day trends (EC-Earth3)
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Evaluation

e GANs can downscale a

scenario from a GCM in less
than 5 minutes on a A100GPU.

UNET (12km)

 UNETs tend to “smear” out
precipitation and often
underestimate extreme events.

ACCESS-CM2 (12km)
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* GANSs can generate realistic
spatial structures of daily
precipitation, with consistent
statistics.
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CC Signal: ACCESS-CM2 (In sample)

* Climate Change Signal is the %
change in End-of-century
precipitation (2080-2099)
relative to the historical period
(1986-2005)

* The imperfect framework GAN
nearly perfectly conserves the
CC signal.




Out of Sample
(EC-Earth)

All methods reproduce
CCAMs CC signal accept
during MAM.

UNETs CC signal is too
“smooth”.

During MAM there is
poor agreement
between EC-Earth3 and
CCAMs CC signal
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