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/ Abstract

Despite the necessity of Global Climate Models (GCMs) sub-selection in downscaling studies,
an objective approach for their selection is currently lacking. Building on the previously estalb-
lished concepts in GCMs evaluation frameworks, we develop a weighted averaging tech-
niqgue to remove the redundancy in the evaluation criteria and rank 37 GCMs from the sixth
phase of the Coupled Models Intercomparison Project over the contiguous United States.
GCMs are rated based on their average performance across 66 evaluation measures in the
historical period (1981-2014) after each metric is weighted between zero and one, depend-
INg on its uniqueness. The robustness of the outcome is tested by repeating the process with
the empirical orthogonal function analysis in which each GCM is ranked based on its sum of
distances from the reference in the principal component space. The two methodologies
work in contrasting ways to remove the metrics redundancy but eventually develop similar
GCMs rankings. A disparity in GCMs' behavior related to their sensifivity 1o the size of the eval-
uation suite is observed, highlighting the need for comprehensive multi-variable GCMs evalu-
ation at varying timescales for determining their skillfulness over a region. The sub-selection
goal is to use a representative set of skillful models over the region of interest without subbstan-
tial overlap in their future climate responses and modeling errors in representing historical cli-
mate. Additional analyses of GCMs' independence and spread in their future projections pro-
vide the necessary information to objectively select GCMs while keeping all aspects of ne-
cessity in view.

Significance

The evaluation in this study is intended for downscaling studies where GCM sub-selection is
necessary due to many unavoidable factors. We develop a weighted averaging technique
for model evaluation that removes redundancy in the selected metrics. Additionally, we high-
ight the need for comprehensive multi-variable evaluation criteria at varying timescales to
determine models' skillfulness over a region, their independence, and representativeness in
capturing spread in future projections.

Study Area:. The contiguous United
States (CONUS) is divided into four Hy-
drological Unit Codes Level 2-based
regions for the evaluation of GCMs.
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Relative Models Ranking

Models are ranked using two methodologies:
1) Weighted Averaging: Evaluation metrics are weighted based on their uniqueness so that
highly correlated metrics are downweighed.

2) EOF-based Strategy: Accounts for the distance of each simulated metric from the refer-

\ence INn the PC space. Sum of Euclidean distances from the observations defines its rank. /

/1 .GCMs Evaluation: Relative Error and Meitrics Uniqueness \

We analyze the performance of CMIP6 GCMs across sixty-six evaluation metrics . Many met-
rics exhibit considerable correlations. Models' relative ranking can be affected by the redun-
dancy of information contained in these metrics. Weighted averaging based on metrics
unigueness solves this issue.
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-l GCMs over the North (region).
The left panel shows relative errors
corresponding fo each metric
across all GCMs, and the line plot
on the right shows the standard
> deviation of the relative error for
each metric across all GCMs.
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Metrics Uniqueness based on the
v similarity score. The correlation
" between the pairwise metrics
(bottom triangle) and the corre-
sponding similarity score (top tri-
angle) over the North. Meifrics
with high correlations exhibit @
high similarity score and are
down-weighted. The line plot at
- the boftom shows the overall

weight for each metric.
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/2. GCMs Ranking \

The regional and CONUS scale relative GCM rankings based on the two methodologies. The
two approaches yield reasonably similar results at the CONUS scale.
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The weighted averaging (leftf) and EOF-based Euclidian distances (right). The thin
ines represent the models’ relative ranking over four sub-regions, and the thick line

“epresen’rs the overall CONUS scale ranking. /
/3. Relative Importance of Individual Metrics N

In the weighted averaging technique, the relative importance of an individual metric de-
pends on two main factors: 1) the skill variation for that metric across the GCMs and 2) its
weight or unigueness. Substantial inconsistency exists in the performance of average-per-
forming models. Therefore, using only a handful of metrics in an evaluation risks causing errors
IN the GCM selection process.
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/4. GCMs Independence \

We use cosine similarity to quantify the independence or interdependence of GCMs. The
cosine similarity of two vectors qguantifies how close their directions are based on the cosine
of the angle between them. The cosine similarity equals one when the two vectors point in
the same direction, while it equals zero when the two vectors are orthogonal. Several models
INn the CMIPé6 share modeling component and exhibit similar behavior. Therefore, model inde-
pendence must be a consideration is sub-selection.
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The cosine similarity score for each pair
of GCMs using the weighted metrics
data (left), its distribution across GCMs (

&op right) and the network of similar models with scores > 0.8 (bottom right). /

K‘S. GCMs Regional Climate Sensitivity and Spread \

Regional climate sensitivity is defined as GCMs simulated temperature changes over the
region in future period of interest. Careful examination of regional climate sensitivity and
GCMs spread in regional precipitation responses is necessary to ensure the representative-
ness of sub-selected models for downscaling studies.
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Projected yearly change in temperature (left) and precipitation (right) over with
reference to 1995-2014, as a difference from the ensemble mean (shown in the
bottom row). The dotfted line in the right line plot represents the fraction of years
when the projected absolute change in an individual GCM is above the ensem-
ble average. The red line in the right line plot represents the % difference between
the ensemble average and each model in projected absolute precipitation

Qhonges over 2014-2100. /




