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APPROACH

High-resolution precipitation estimates are required to correctly quantify the related hazard, but 
classical methods based on simulations of dynamical models are computationally too expensive. 
Thus, the study aims at deriving a data-driven approach to emulate the convection permitting 
dynamical models to derive high-resolution precipitation distribution, more efficiently. 

The problem is tackled as a downscaling task, where high-resolution precipitation estimates are 
derived starting from low-resolution atmospheric parameters values. The proposed framework is 
based on deep learning architectures, following a supervised approach.
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The capability of the DL-model to generalise both in 
space and time was then assessed. Two main input 
settings were considered in the evaluation phase:

1. Real world (ERA5)
2. Model world (RegCM) 
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A DEEP LEARNING FRAMEWORK TO EMULATE THE CONVECTION PERMITTING
DYNAMICAL MODELS FOR EXTREME PRECIPITATION

Valentina Blasone1, Viplove Arora3, Erika Coppola2,
Guido Sanguinetti3 and Luca Bortolussi1

ERA5 REANALYSIS
(25x25 km) 

HUMIDITY, TEMPERATURE, 
WIND, GEOPOTENTIAL

4D: lon, lat, altitude, time (hourly)

1. MOTIVATION AND OBJECTIVE

2. DATA 3. MAIN CHALLENGES

4. DEEP LEARNING FRAMEWORK (DL-model)
Convolutional and recurrent neural networks are adopted to capture the spatial and temporal 
dependencies in the atmospheric data and produce a low-dimensional encoding of the input. 
Graph neural networks are used to effectively model the irregular output grid as a graph.

Severe precipitation is difficult to predict and working 
with real data (GRIPHO) is challenging.

5. TRAINING AND EVALUATION
The deep learning framework was trained on northern 
Italy for a time span of 15 years.

6. REAL-WORLD RESULTS 7. MODEL-WORLD RESULTS
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