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From climate data to hydrological data

Hydrological modelling for Bavaria
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Figure 1: In Figure (a), we illustrate the SMILE CRCM5-LE based on Leduc et al. (2019). Within the ClimEx

workflow, each of its 50 transient simulations, spanning from 1950 to 2099, undergoes downscaling and correction for

hydrological modelling using WaSim. Our primary focus encompasses Bavaria and its associated river sources, as depicted

in Figure (b). We exemplify the process during summer in Mittenwald (alpine climate).
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Figure 2: Concerned climate variables in a daily resolution over two years for Mittenwald.

pr- Precipitation (mm day-1); tas- Temperature (deg. C); dew- Dewpoint temperature (deg.
C); sfcW- Wind speed (m/s); rsds- Downwelling shortwave radiation (W)

Data types
Name Abbrev. Explanation

SDCLIREF oc Measured and interpolated reference data

CRCM5 calibration mc Simulation data from CRCM5 member kba

CRCM5 univariate BC m̂cUBC Univariate corrected mc (Cannon 2015)

CRCM5 multivariate BC m̂cMBCn Multivariate corrected mc (Cannon 2018)

CRCM5 multivariate BC II m̂cVBC Multivariate corrected mc (Authors’ correction)

Table 1: The calibration period spans from 1981 to 2010. All corrections are implemented on

seasonal subsets. VBC is a work in progress vine copula bias correction of the authors.

Research Question: How accurate do the corrected data m̂c represent the measured, true distribution F (oc)?

Approaching evaluation measures for bias correction

Bias correction and Evaluation

m̂c = F (oc)−1(F (mc)(mc))

If the bias correction was successful, we assume

m̂c ∼ F oc

Analysis by vine copula
To analyse, the joint distribution we need to
understand its constitution. According to
Sklar’s theorem, the joint distribution F can be
expressed w.t.h. of the marginal distribution
functions Fi and the (vine) copula function C .

F (xpr , . . . , xrsds) = C (Fpr(xpr), . . . , Frsds(xrsds))

⇒ The efficacy of the correction can be asserted
by the congruence between C (oc) and C (m̂c).

Bivariate evaluation
The advantage of vine copulas is their
deduction in a product of marginal bivarite
copulas which can be analysed individually.
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Figure 3: Initial two trees from the oc vine graph as

identified by Dissman (2013). Subsequent bivariate

analyses utilize edge e = (dew , tas).

Analysis of joint extremes- tail dependence

Tail dependency measures the probability λ that one variable (dew) is extreme, given that
another variable (tas) is also extreme. There is lower (λL) and upper (λU) tail dependency:

λU = lim
q→1

P (uedew > q | uetas > q) ;λL = lim
q→0

P (uedew < q | uetas < q)
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Figure 4: Depicts tail dependencies between tas and dew: upper tail dependencies λU in red and lower tail

dependencies λL in blue. Panels (a) to (c) illustrate scatterplots of the marginal joint distribution for observed data

oc , multivariate correction m̂cVBC , and univariate correction m̂cUBC . The multivariate correction in (b) effectively
reproduces the joint distribution of oc in (a) shape, whereas the univariate approach in (c) inadequately captures the
distribution, particularly underrepresenting the tails. Panel (d) presents the boxplots of tail dependencies across all
members. Consistent with (c), UBC (right) undervalues the tails. While MBCn (lower left) improves representation, it

remains an underestimate. VBC (mid), despite its higher variance, more accurately captures the tails in median terms.

Descriptive evaluation of the relationship between tas and dew
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(c) 180° rotated gumbel copula
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(d) empirical m̂cUBC copula
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(e) empirical m̂cMBCn copula
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(f) empirical m̂cVBC copula

Figure 5: Depicts the summer relationship between tas and dew in Mittenwald using the empirical copulas of mc (a),
oc (b), m̂cUBC (d), m̂cMBCn (e), m̂cVBC (f) and the parametric copula ôc by their high-density regions

(HDR ∈ {0.6, 0.75, 0.9, 0.95, 0.99}). Compared to oc in (b) and (c), the empirical copula for mc (a) spans a larger

area within the hypercube [0, 1]2. This suggests a diminished correlation, particularly evident in regions of lower tas and
elevated dew. Notably, the univariate correction UBC in panel (d) fails to rectify this relationship. Only the multivariate

methods in (e) and (f) succeed in addressing this discrepancy, revealing more realistic bivariate rank correlations.

Modelling - Infer the global likelihood of the model

1. Model the (parametric) copula of oc , {(C (oc)
e , θ̂

(oc)
e ) | ∀e ∈ E} (see Fig. 3)

2. Evaluate the log-likelihood of m̂c given oc to check if m̂c ∼ F (oc)

2.1 for univariate margins: L(x (m̂c) | f̂ (oc)) :=
∑

i∈U ln(f̂
(oc)
i (x

(m̂c)
i ))

2.2 and bivariate margins separately: L(u(m̂c) | (C (oc), θ̂(oc))) :=
∑

e∈E ln(c
(oc)
e (u

(m̂c)
e | θ̂(oc)e ))

vbc

ubc

mbcn

model

−65000 −60000 −55000 −50000 −45000

(a) univariate log-likelihood L(x (m̂c) | f̂ (oc))

vbc

ubc

mbcn

model

−80000 −60000 −40000 −20000

(b) bivariate log-likelihood L(u(m̂c) | (C (oc), θ̂(oc)))

Figure 6: In Panel (a), the likelihood of all univariate margins is depicted. All correction methodologies enhance the

original model data’s fit, with the univariate correction showing the most improvement. MBCn appears to exert more

influence on the original rank structure compared to VBC. Panel (b) delineates the likelihood across all bivariate margins.

Given the modeled copulas, VBC optimally refines the model data fit, while UBC offers the minimal enhancement.
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