
Optimizing climate data analysis workflows: 
Strategies and lessons learned from two case studies

Alex Goodman 1 , Colin Raymond 1,2 , and Peter Kalmus 1

1 Jet Propulsion Laboratory, California Institute of Technology 
2 University of California Los Angeles

Why data analysis workflows need to be better optimized?
Workflows in Earth Science are increasingly relying on larger datasets, 
especially ones involving evaluations of multiple climate models. Often, 
the first resort to scale these up is to run the analyses in parallel which is 
leading to dramatic increases in overall usage of supercomputing 
resources over the past decade (Figure 1). 

References
1 https://hec.nasa.gov/news/reports.html
2 Lu, Y., and D. M. Romps, 2022: Extending the Heat Index. J. Appl. Meteor. Climatol., 61, 
1367–1383, https://doi.org/10.1175/JAMC-D-22-0021.1.
3 Davies-Jones, R., 2008: An Efficient and Accurate Method for Computing the Wet-Bulb 
Temperature along Pseudoadiabats. Mon. Wea. Rev., 136, 2764–2785, 
https://doi.org/10.1175/2007MWR2224.1.

Figure 2. Projections in NASA supercomputing user demand1 (red) and actual 
available usage (green).

However, we contend that in some cases, the need to rely on high 
performance computing resources can be greatly reduced or even 
eliminated when the analysis code is better optimized. We will 
demonstrate this by describing how we optimized widely distributed codes 
for calculating heat index and wet-bulb temperature leading to 
improvements in running time by over two orders of magnitude. Both 
algorithms rely on numerically intensive root finding methods (Bisection 
and Newton’s method respectively) to derive their results.

Why focus on these two use-cases?
Both of these quantities are highly relevant in analyzing projections of 
future climate extremes which are of great interest to decision makers. 
The current inefficiency of these codes has proven to be a great bottleneck 
to scientists, so code optimizations can greatly reduce project costs and 
reliance on supercomputing resources.

Figure 1. Historical utilization from Earth Science Directorate (ESD) projects of 
the NASA HECC supercomputing resources1

Consistent with this big data problem, NASA program managers are also 
expecting this demand to continue to grow over the next decade, with a 
possible concern that demand will increasingly outstrip available 
computational capacity as shown in Figure 2.

Case Study 1: Extended Heat Index2
• Problem: Most data analysis codes are written in interpreted 

languages since more efficient compiled languages like C or Fortran 
are unsuitable for exploratory data analysis.

• Original code provided by authors is written in python and is not 
vectorized.

• Instead, we can use the numba python library to accelerate and 
vectorize the code using Just in time compilation (JIT). This can 
result in workflows written in python that run nearly as fast as they 
would if they were written in C or Fortran. 

• Using this along with some additional minor modifications to the 
algorithm, we achieved a performance improvement of over 550x. 
(Figure 3)

Figure 3. Running time for EHI calculation using 1 million randomly generated 
samples.

Case Study 2: Wet Bulb Temperature3
• In this example (originally written in MATLAB), the code is already 

vectorized so using numba alone leads to more modest performance 
improvements than in case study 1.

• However, we determined through automatic differentiation techniques 
that derivatives were being calculated incorrectly. 

• Fixing this error allowed the algorithm to converge much more 
quickly, leading to a performance improvement of over 1000x. (Figure 
4)

• Figure 4. Running time of WetBulb temperature calculation using 1 million 
generated samples

Acknowledgements
We would like to thank David Romps and Yi-Chuan Lu for providing us their guidance on 
the EHI algorithm and code. Original versions of the code for calculating the wet bulb 
temperature and EHI respectively are available from:
1) https://github.com/bobkopp/WetBulb.m
2) https://romps.berkeley.edu/papers/pubdata/2020/heatindex/heatindex.py

~1 hr

~5 s

~1 min

~500 ms

~50 ms

https://hec.nasa.gov/news/reports.html
https://doi.org/10.1175/2007MWR2224.1
https://github.com/bobkopp/WetBulb.m
https://romps.berkeley.edu/papers/pubdata/2020/heatindex/heatindex.py

