
Figure 1. The architecture of our networks. The data flows according to 
the arrows and are processed by the layers in the network. Green layers 
are dilated (or atrous) convolution layers, with dilations 1, 2, 4, 8 and 16, 
respectively. Yellow layers are non-dilated convolution layers. Blue 
layers are pixel shuffle layers. The output of the last pixel shuffle layer is 
regridded by bilinear interpolation to form the output of the network. The 
numbers next to the layers denote their widths and resolutions, and n is 
the number of parameters in the predicted distributions.
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Machine learning model

Motivation
High resolution climate data is often desirable, because it enables 
better understand of local impacts of climate change, and better small 
scale risk assessment, planning and decision-making. However, 
dynamical downscaling is slow and very resource intensive, and is 
likely to introduce additional biases into the system, while current 
statistical downscaling methods are either of relatively low resolution, or 
limited to small regions.

We present a new machine learning-based downscaling methodology 
that provides climate data at high resolution (5.5 km) for the entire 
European continent. We combine this with k-fold cross validation (with k 
= 6) to cover the period 1985 to 2020.

We predict ground temperature and precipitation, given five climate 
variables (temperature, specific humidity, geopotential height, and 
longitudinal and latitudinal components of wind velocity) on four 
different pressure levels (1000, 850, 700 and 500 hPa) for a total of 20 
values per input grid point.

The input data to our model is ERA-5, a global 0.25 degree resolution 
reanalysis dataset, while the ground truth data, which our model aims to 
predict, is CERRA (Figure 2), a regional reanalysis dataset covering the 
European continent.

Our contributions

A new, fast and inexpensive machine learning-based tool can be used to produce high-resolution 
climate data for the European continent, with performance comparable to a higher-resolution regional 
climate model like HCLIM.

Conclusions

Figure 4. Histograms of the target variables for the Nordic region, constructed by putting the variable 
value in one of 500 bins, for each grid point and time point. The red curves have been constructed by 
placing the mean value of each predicted distribution into its corresponding bin, and they match 
CERRA’s extremes poorly. The Purple curves have been constructed by increasing the value of each 
bucket with the likelihood that a sample from the predicted distribution would fall into that bucket; this 
results in a much better match with CERRA’s extremes, which illustrates the importance of considering 
the entire predicted distribution, rather than just a representative value.

Besides evaluating the performance of our method against CERRA, we also evaluate it against HCLIM, 
an even higher-resolution regional climate model (3 km) divided into three European subregions (the 
Nordic countries, Central and Eastern Europe, and the Mediterranean). We calculate histograms and 
five different indices for our predictions, CERRA, and HCLIM, and find that our predictions are typically 
more similar to CERRA than what HCLIM is. For assessment of interannual variability, see poster from 
Fuentes-Franco et al. in this session.

Figure 3. One of the climate indices we calculate: mean yearly maximal number of consecutive dry days 
(precipitation < 1 mm). Shown for the Mediterranean.

Results

We use two fully-convolutional neural networks, to generate parameters 
for distributions that cover likely values for each of the target climate 
variables. For the temperature, we output a mean and a standard 
deviation to form a normal distribution, for each grid point. For the 
precipitation, we output parameters for gamma-Bernoulli distributions.

Our networks use convolution layers—both ordinary and with dilated 
convolutions—pixel shuffling layers, and a regridding step to go 
between the coordinate systems of the input data and the output data.

We also make a (to the best of our knowledge) novel modification to the 
convolution layer by equipping it with maps with learnable content, of 
the same size as the data that passes through the layer. This enables 
each neural network to by itself learn any topographical information it 
finds useful, since we don’t explicitly provide it with such information.

CERRA

Figure 2. The region covered by the CERRA dataset.
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