

Regional Climate Modeling in North America and Europe: Why such Different Paths?

L. O. Mearns, M. Bukovsky, E. Coppola, J. Christensen, D. Paquin, D. Matte, and F. Giorgi

> ICRC CORDEX Meeting Trieste, Italy

National Center for Atmospheric Research

Perspectives

Currently taking informal expert judgement approach to investigation POSSIBLE EXPLANATIONS

- Nation State
- Filippo moved!
- Balance of RCMs and GCMs within nation state
- Funding vehicles different structures
 Very much a work in progress not easy
 to analyze

Basic contrasts

- NA Domain much larger than Europe's
- Europe applies many more RCMs
 Europe supports many more RCMs
- North America applies fewer
 NA supports fewer (2 or 3)
- Basic questions: why is the number of models supported so different; and what difference does it make in terms of determining future regional climate change

 What difference in terms of adaptation planning, etc.

NCAR

In the beginning ...

- RegCM1 was US model
- Canadian model U. Québec (R. LaPrise) developed and supported CRCM along with Ouranos
- But, there were other US models:
 - RAMS (Pielke Sr.)
 - RSM (J. Roads)
 - What happened to them?
- Then WRF becomes dominant (in US)

NA Programs

NCAR

- NARCCAP multi-agency NOAA, NSF, EPA, DOE
- NA-CORDEX not formally funded used 'donated' funding for producing simulations (but funding for data set development and distribution – ESTCP)

European Programs

- PRUDENCE
- ENSEMBLES
- Euro-CORDEX
- EUCP

All involve both major EU funding and national funding

CORDEX Domains

ENSEMBLES

Table 1 The RCM \times GCM matrix; label X indicates that the corresponding RCM \times GCM pair was available in ENSEMBLES at the time of the study

	BCM	CNRM	HC-lo	HC-med	HC-hi	MPI
C4I					Х	
CNRM		Х				
DMI	Х	Х				Х
ETHZ				Х		
HC-lo			Х			
HC-med				Х		
HC-hi					Х	
ICTP						Х
KNMI						Х
METN	Х			Х		
MPI						Х
SMHI	Х		Х			Х
UCLM				Х		

Déqué et al. 2012

NA-CORDEX

	GFDL-ESM2M (2.5)	MPI-ESM-LR (3.6)	HadGEM2-ES (4.6)	CanESM2 (3.7)	EC-EARTH (3.3)	MPI-ESM-MR (3.4)
RegCM4 (Iowa State & NCAR)	25km 50km	25km 50km	25km 50km			
WRF (U. of Arizona & NCAR)	25km 50km	25km 50km	25km 50km			
HIRHAM5 (DMI)					50km	
CanRCM4 (CCCma)				25km 50km		
CRCM5* (UQAM & OURANOS)	25km	25km 50km		<mark>50km</mark> 25km		<mark>50km</mark> 25km
RCA4 (SMHI)				50km	50km	

*With and without nudging depending on institute.

Orange = RCP 4.5 and RCP 8.5 Black = RCP 8.5 Only Purple = RCP 2.6, RCP 4.5, and RCP 8.5

Comparison of Programs

- PRUDENCE (2001-2004) 30 yr time slices, 50 km grid, SRES A2 and B2, 2 GCMs, 6 RCMs
- ENSEMBLES (2004-2009):Transient 1960-2100 (some only 2050), 25 km grid, SRES A1B, 8 GCMs, 16 RCMs (but sparse filled matrix)
- EURO-CORDEX (2009ongoing):Transient, 12km – 50km, 3 RCPs, multiple GCMs and RCMs
- EUCP (2017-May 2022): CPM time slices, analysing large CORDEX RCM-GCM matrices

- PIRCS: 3-month periods, 1988 and 1993, 50 km, NCEP BCs, 6 RCMs
- NARCCAP: 30-year time slices, 50 km grid, SRES A2, 4 GCMs, 6 RCMs, balanced factorial design
- NA-CORDEX: transient, 25 km grid, (mainly) RCP 8.5, 6 GCMs, 6 RCMs, 24 runs

Opinions So Far

- Based on nation state analysis, makes sense since NA comprised of 2 states, Europe, many states, thus many regional models
- NA missing out on some important numerics and physics explorations by not using more RCMs
- Added value of co-ordinated effort in Europe - e.g., Euro-CORDEX General Assembly, less so in US

Opinions so Far (cont'd)

- At NCAR, using 'other' models is not encouraged (but not prevented). Note NARCCAP received an NCAR wide award.
- NA puts most climate resources into further development of global models (five total in US and Canada).
- In US, lack of high quality organization across agencies (e.g., NSF, NOAA, EPA, DOE – getting funding for NARCCAP was a rare success in this regard).

Future Directions

- Interview US/Canadian program managers – get more in depth perspective on attitudes towards RCMs vs.
 GCMs/stretched grids
- Determine approach for comparing the difference in information (and uncertainty) through using more/fewer RCMs.
- Additionally, use of more ensemble members for driving the RCMs
- Develop relationship 'tree' for RCMs

