Impact of climate change in Mexican winegrape regions

6

TECC

Natalia Castillo

Tereza Cavazos Edgar Pavia

Main winegrowing regions

"New varieties hybridized or adapted"

Schultz and Jones, 2010 Roviello et al., 2021

2

Grapevine Climate/Maturity Groupings

Winegrapes according with GS

Temp (NH: Apr-Oct)

What was this research about? Why?

. Investigate current climate of major winegrape growing regions in Mexico

. Possible changes of climatic indices during the 21st century using RegCM and RCA4

State	Industrial grape production (tons)
Zacatecas	28,676
Baja California	24,748
Aguascalientes	8572.9
Coahuila	3889
Guanajuato	3205
Querétaro	2851
Nuevo León	29

Six top Mexican wine regions

Baja California, Coahuila, Querétaro, Guanajuato, Aguascalientes, Zacatecas (and Nuevo León)

Туре	Winegrape	States
White	Chardonay	BC, Coah, Zac, Qro
	Chenin blanc	BC, Coah, Qro
	Sauvignon blanc	BC, Coah, Zac, Qro, Gto
	Muscat	Coah, Zac, Ags
	Saint Emilion	Zac
Red	Cabernet Sauvignon	BC, Coah, Zac, Gto, Qro
	Merlot	BC, Coah, Zac, Gto
	Tempranillo	BC, Ags, Qro
	Malbec	Coah, Zac, Ags, Qro
	Nebbiolo	BC, Ags
	Syrah	BC, Coah, Zac, Ags, Gto

Castillo et al., 2023

Bioclimatic indices and other indicators

Index

Growing Degree Days (GDD) Baskerville and Emin (1969) and Jones et al. (2010)

Cool Night Index (CI: °C)

(Tonietto y Carbonneau, 2004)

Hydrothermal coefficient (HTC) (Mesterházy et al., 2014)

Growing season temperature (GST: °C)

Jones et al. (2010)

Growing season precipitation (GSP: mm) Firth et al. (2017) Suitability of wine regions (Apr-Oct Northern Hemisphere)

2700 > GDD > 850

How is the climate of these winegrape growing regions? Is all tropical over there?

What about the evaluation of bioclimatic indices?

How are September nights? — CI of harvest season

And... what about the future GDDs? + Changes **RCP8.5 RCP2.6** 2070-2099 2021-2050 40°N Area of suitability:Reduction! 30°N 20°N **RCP8.5 RCP2.6** 95°Ŵ 110°W 110°W 95°W 2070-2099 2021-2050 (1981-2010)40°N 100 200 300 400 500 600 700 (GDD) 30°N 20°N 90°W 120°W 105°W 90°W120°W 105°W 90°W 105°W 120°W 10 72 76 80 88 92 100 60 68 84 96 64

(%)

And... what about the future?

Summary

	Temp 🕇	Prec 💶 ?	Area 📕	Phenology ?	ADAPTATIONS!
1	Increase during GS: 1.5 to 4 °C Nocturnal: affecting grape's aroma and	Uncertainty Regions opposite signals RCP2.6 (GS)	Fraction area suitable for viticulture Possible new	Earlier beginning GS, flowering, harvest	Shifting harvest to August Hybridized varities
•	colour Possible GS shift (earlier as in NL)	RCP8.5 FF (GS): BC: + 30 mm HP: -126.5 mm-> evapotranspiration -> vine's stress	regions in higher elevation sites of Mex and US NF in BC: might	Grapevine's physiology: Sugar, acidity,	 Solar energy to power: Atmospheric humidity condensers Water recycling
I	(RCP8.5): dormancy?-> false springs	Seasonal uncertainty (drought, extremes, heat waves)	Variability % frec years suit area	different wine's flavours	plants: Irrigation, desalination vineyards close coast

Where can I find this information?

Received: 22 September 2022 Revised: 5 August 2023 Accepted: 7 August 2023

DOI: 10.1002/joc.8224

RESEARCH ARTICLE

onal Journal RMetS

Impact of climate change in Mexican winegrape regions

Natalia Castillo^{1,2} | Tereza Cavazos¹⁰ | Edgar G. Pavia¹⁰

¹Departamento de Oceanografía Física, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Mexico ²University School for Advanced Studies-IUSS, Pavia, Italy

Correspondence

Tereza Cavazos, Departamento de Oceanografía Física, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Carr. Tijuana-Ensenada 3918, Zona Playitas, 22860 Ensenada B.C., Mexico. Email: tcavazos@cicese.mx

Funding information

Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California; Consejo Nacional de Ciencia y Tecnología; Instituto Nacional de Ecología y Cambio Climático

Abstract

We analysed the current climate of seven winegrowing regions of Mexico and their possible changes during the 21st century. Various bioclimatic indices were calculated with observations and simulations over a wide domain that covers Mexico and the south and southwest United States. We used two regional climate models (RegCM4.7 and RCA4) for historical (1981-2010), near future (NF: 2021–2050) and far future (FF: 2070–2099) periods under two greenhouse gas emissions scenarios (RCP2.6 and RCP8.5). Both models reproduced the main characteristics of the Mediterranean and semiarid climates typical of the winegrape regions with some biases. Despite the errors, the models suggest similar future changes during the growing season (GS: April-October) in winegrape regions. Increases in temperature ($\sim 1.2^{\circ}$ C) are expected in the NF, which could produce an early start from the growth (mid-March) season to the harvest. More significant changes are expected in the FF under the RCP8.5 scenario; temperature during April–October may increase $\sim 4^{\circ}$ C, and growing degree-days (GDD) and minimum temperature could also increase (~700 and 4.5°C, respectively), especially in the northern Mexican high plateau, substantially reducing the suitable areas for viticulture. In Baja California (BC) the suitable years for viticulture may decline by 30%–50%, suggesting an increase in the interannual uncertainty. Moreover, in BC and California the number of cool nights (Tmin $< 12^{\circ}$ C) could be reduced during the

DOI: 10.1002/joc.8224

Go for it!

Currently, future steps...

Characterization of compound extremes: heat waves and drought, associated large circulation patterns and impacts

blanca.castillo@iusspavia.it