

HEAT IN CITIES ACROSS THE GLOBE: WHAT CAN THE CORDEX-CORE REGIONAL CLIMATE MODEL ENSEMBLE TELL?

GABY S. LANGENDIJK*, TOMAS HALENKA, JESUS FERNANDEZ, MATTHIAS DEMUZERE, LLUIS FITA, PETER HOFFMANN, JIACAN YUAN, RAFIQ HAMDI, ELENI KATRAGOU, SOPHIE BASTIN, MICHAL BELDA.

* DELTARES, THE NETHERLANDS

RESEARCH OUESTIONS

- How are urban areas represented in the CORDEX-CORE dataset, wr.t. the land surface description?
- How do regional climate models (RCMs) capture and project the urban-rural temperature contrast and heat extremes on the 0.22° grid resolution in cities across the globe for different levels of climate change?

CORDEX-CORE dataset at a glance:

- <u>Regional climate models</u>: REMO & RegCM
- <u>Spatial resolution:</u> 0.22° / ~25km
- <u>Climate scenarios:</u> RCP8.5 & RCP2.6
- <u>Simulation period</u>: 1950 (1970) 2100 historic + projections 1979 - 2017 evaluation (ERA-Interim)

CITY SELECTION

Selection criteria:

- City size: area (km2) and population
- Climate classification (Köppen)
- Geographic characteristics (in-land, coastal, mountainous)
- Balance across CORDEX-CORE domains
- Climate impact (population, urbanisation, climate risks)
- Observations available

Selected cities (top) and quantities (Q) of cities matching the criteria characteristics (geographic, climate, and domain) (bottom).

I. Jakarta		I I. Sao Paulo		21. Moscow		31. Baghdad	
2. Manila		12. Paris		22. Montreal		32. Khartoum	
						33. Santiag	0
3. Mumbai		13. London		23. Seoul		(Chile)	
4. Dhaka		l 4. Istanbul		24. Lima		34. Melbourne	
5. Delhi (new	,						
Delhi)		15. Los Angeles		25. Lagos		35. Berlin	
6.Tehran		I 6. Beijing		26. Luanda		36. Singapore	
7. Cairo		17. Chengdu		27. Riyadh		37. Naples	
8. New York		18. Mexico-City		28.Tashkent		38. Bogota	
9. Tokyo		19. Johannesburg		29. Sydney			
10. Buenos A	ires	20. Chicago		30. Shangh	nai		
Charact.	Q	Charact.	Q	Charact.	Q	Charact.	Q
Coastal	20	Af	2	Am	2	Aw	2
Coastal In-land	20 19	Af As	2 0	Am BSh	2	Aw BSk	2
Coastal In-land Mountain	20 19 5	Af As BWh	2 0 4	Am BSh BWk	2 2 0	Aw BSk Cfa	2 2 5
Coastal In-land Mountain	20 19 5	Af As BWh	2 0 4	Am BSh BWk	2 2 0	Aw BSk Cfa	2 2 5
Coastal In-land Mountain Africa	20 19 5 5	Af As BWh Cfb	2 0 4 6	Am BSh BWk Cfc	2 2 0	Aw BSk Cfa Csa	2 2 5 2
Coastal In-land Mountain Africa N-America	20 19 5 5 4	Af As BWh Cfb Csb	2 0 4 6 3	Am BSh BWk Cfc Csc	2 2 0 0 0	Aw BSk Cfa Csa Csa	2 2 5 2 2 2
Coastal In-land Mountain Africa N-America L-America	20 19 5 5 4 6	Af As BWh Cfb Csb Cwb	2 0 4 6 3 2	Am BSh BWk Cfc Csc Cwc	2 2 0 0 0 0	Aw BSk Cfa Csa Csa Cwa Dfa	2 2 5 2 2 1
Coastal In-land Mountain Africa Africa N-America L-America Europe	20 19 5 4 6 6	Af As BWh Cfb Csb Cwb Dfb	2 0 4 6 3 2 3	Am BSh BWk Cfc Csc Cwc Dfc	2 2 0 0 0 0 0 0	Aw BSk Cfa Csa Csa Cwa Dfa Dfa	2 2 5 2 2 1 0
Coastal In-land Mountain Africa Africa L-America Europe Oceania	20 19 5 4 6 6 2	Af As BWh Cfb Csb Cwb Dfb Dsa	2 0 4 6 3 2 3 0	Am BSh BWk Cfc Csc Cwc Dfc Dsb	2 2 0 0 0 0 0 0 0	Aw BSk Cfa Csa Csa Cwa Dfa Dfa Dfd Dsc	2 2 5 2 2 1 0 0
Coastal In-land Mountain Africa Africa N-America L-America Europe Oceania C-Asia	20 19 5 4 6 6 2 5	Af As BWh Cfb Csb Cwb Dfb Dsa Dsd	2 0 4 6 3 2 3 0 0	Am BSh BWk Cfc Csc Cwc Dfc Dsb Dwa	2 2 0 0 0 0 0 0 1	Aw BSk Cfa Csa Csa Cwa Dfa Dfa Dfd Dsc Dwb	2 2 5 2 1 0 0 0
Coastal In-land Mountain Africa Africa N-America L-America Europe Oceania C-Asia E-Asia	20 19 5 4 6 6 2 5 7	Af As BWh Cfb Csb Cwb Dfb Dsa Dsa Dsd Dwc	2 0 4 6 3 2 3 0 0 0 0	Am BSh BWk Cfc Csc Csc Dfc Dfc Dsb Dwa Dwa	2 2 0 0 0 0 0 0 1 0	Aw BSk Cfa Csa Csa Cwa Dfa Dfa Dfd Dsc Dwb ET	2 2 5 2 1 0 0 0 1

Covers key land areas across the globe, using following domains:

INITIAL FINDINGS

Two urban land surface products are used as a reference urban fraction and its variability/uncertainty, serving as a benchmark for the land surface description of urban areas in the RCMs:

• The 10m resolution WorldCover product, of which the binary urban label is resampled into urban fraction (Pratiman & Roth, 2022, DOI: 10.5281/zenodo.6994974)

Selected cities (red dots) by population size (top) and area size (bottom).

- →Urban-rural difference visible in CORDEX-CORE dataset, mainly for 90th percentile heat extreme and year mean of maximum temperature (TasMax).
- \rightarrow Stronger urban signal for minimum temperature (TasMin) than TasMax would be expected as UHI is strongest at night. Probably simple urban schemes of the RCMs do not retain the heat during the day to release it at nighttime.

EXAMPLE: TOKYO

• The 100m global Local Climate Zone map, assigning urban fraction provided by Stewart and Oke (2012) look-up table (Demuzere et al., 2022, DOI: 10.5194/essd-14-3835-2022)

I. RegCM generally closer to LCZ and WorldCover representation of urban land surface than REMO.

2. Urban land surface in North-America (NAM) & Europe (EUR) relatively well represented by both

3. Urban land surface description of both RCMs poorly represent the urban areas in Asia and Africa.

 \rightarrow Main reasons behind underrepresentation of urban land surface in respective regions is the outdated urban land-use datasets in the RCMs & high urbanisation rates in these regions of the world.

 \rightarrow It is critical to improve land surface datasets for RCMs to simulate urban areas adequately.

This research is part of the WCRP CORDEX Flagship Pilot Study "URBan environments and Regional Climate Change" (FPS URB-RCC) // WEBSITE: https://ms.hereon.de/cordex_fps_urban/ // COORDINATORS: Gaby S. Langendijk, Tomas Halenka, Peter Hoffmann