

Introduction

Main objective

Produce/generate a set of high-resolution land use change projections for regional research in Ethiopia using the new integrated scenarios of SSPs-RCPs.

Specific objectives/purposes

- Link the land projection dataset to the latest group of climate research scenarios, SSP-RCPs, and
- Improve the resolution of the global land projection dataset (LUH2) under the latest scenario

Therefore, this study used the Future Land Use Simulation (FLUS) model to produce a 1-km future land use land cover (LULC) dataset in Ethiopia, comprising six broad land use types at 10-year intervals from 2020 to 2100 with eight SSP-RCP scenarios

SSP-RCP Scenario-based Future Land Use Change Projection over Ethiopia Ermias Sisay Brhane¹ and Koji Dairaku¹ ¹ University of Tsukuba, Tsukuba City, Ibaraki Prefecture 305-8577, Japan

Methodology

The methodological framework for producing/generating a high-resolution future LULC dataset under SSPs-RCPs scenario in Ethiopia (study area).

Estimation of future land use demand based on LUH2 datasets \rightarrow estimation of the future land use area demands for different land use types under eight SSPs-RCPs scenarios.

2. Simulation of future land use dynamic with the FLUS model \rightarrow conducts a 1-km spatial land simulation using the future land use simulation (FLUS) model.

Estimation of future land use demand

□ Land-Use Harmonization² (LUH2)

(http://luh.umd.edu/index.shtml)

- LUH2 v2f Release
- □ 12 LULC state layers (supplementary material)
- □ annual resolution from 2015 to 2100, eight SSP-RCP scenarios
- **0.25° resolution** (approximately 25 km at the equator).

FLUS (Future Land Use Simulation) model

A new CA-based model, which couples "top-down" socio-economic modeling and "bottom-up" spatial simulation (Li et al., 2017). The major mechanisms involved in the FLUS model

- 1) ANN-based probability of occurrence estimation module and
- 2) The self-adaptive inertial and competition mechanism CA of roulette selection

Data and Spatial Variables

- □ The dataset used to build and train the FLUS model includes the LULC data and spatially explicit biophysical and socioeconomic variables at each grid cell.
- □ 18 spatial variables/input (listed in the table) are assumed to represent the driving forces of land use change, as commonly used in the global LULC simulation models (Li et al., 2017).

SSP-RCP Scenario-based Future Land Use Change Projection over Ethiopia Ermias Sisay Brhane¹ and Koji Dairaku¹ ¹ University of Tsukuba, Tsukuba City, Ibaraki Prefecture 305-8577, Japan

l'iguic. c
 Data
Land use
Spatial Variable
Annual mean te
Minimum and N
Annual precipit
Soil quality
salts; Workabi
availability)
DEM
Slope, Aspect
Gross Domesti
Population Der
Distance to ro
Distance to riv
Distance to cit
Restricted Are
35°0'0"E
LULC_
Z,0.0. -0.0
10°0'0'N
2
2:0,0
0 100
35°0'0"E

Figure: Spatial driving factors used in this study

Resolution	Year	So
300m (raster)	1992-2020	European Space Agency Clim (<u>http://esa-landcover-cci.org/</u>)
0.25°*0.25° (raster)	2015-2100	Land-Use Harmonization2 (LL (<u>http://luh.umd.edu/</u>)

	Year	Resolution	Dat
mperature	1991-2020	0.5'	Climatic Research Unit gridded Tim
laximum Temperature			
ation			
ability to roots; Excess ity and Nutrient	2008	5'	Harmonized World Soil Database (<u>http://webarchive.iiasa.ac.at/Research</u> <u>database/HTML/SoilQuality.html?sb=10</u>
		30m (Raster)	ASTER Global Digital Elevation
and Hillshade	_		Retrieved from DEM
Product (GDP)	2010	1 km (Raster)	Chen et al., 2022
sity	2010	1 km (Raster)	WorldPop and Center for Internation Network (CIESIN) (<u>https://dx.doi.</u>
ad	1980-2010	1 km	NASA, Socioeconomic Data and Open Access Data Set, version 1
ər		Shapefile	RCMRD GeoPortal (https://geopo
/sub city/etc.	2014	Shapefile	United Nations, Department of E Division (2014)
a Maps		Shapefile	World Database on Protected Are

Year	Overall accuracy (OA)	Kappa coefficient	Figure of (FoM
1992	0.894	0.912	0.11
1995	0.923	0.890	0.23
2000	0.839	0.760	0.17
2005	0.854	0.841	0.15
2010	0.880	0.837	0.42
2015	0.892	0.841	0.14
2020	0.818	0.860	0.19

ource nate Change Initiative (ESA-CCI) UH2) ta Source ne Series (CRU TS v. 4.06) h/LUC/External-World-soil-Model v3 (<u>https://earthdata.nasa.gov/</u>) tional Earth Science Information org/10.5258/SOTON/WP00674 Applications Center, Global Roads (gROADSv1) ortal.rcmrd.org/

Economic & Social Affairs, Population

reas (WDPA)

The FLUS model is used to simulate multiple land use changes in Ethiopia

- Land use datasets for Ethiopia
 - \rightarrow 2020 to 2100 with 10-year intervals
 - \rightarrow the eight SSP-RCP scenarios:
 - \rightarrow 1 km spatial resolution
 - \rightarrow Six land use types

(i.e., cropland, forest and shrubland, grassland, barren, urban area, and water bodies) □ All files in the datasets are in single-band GeoTIFF format. • Future land-use simulations showed that forestland degradation and cropland and urban expansion will be the main forms of land-use change in Ethiopia.

SSP-RCP Scenario-based Future Land Use Change Projection over Ethiopia Ermias Sisay Brhane¹ and Koji Dairaku¹ ¹ University of Tsukuba, Tsukuba City, Ibaraki Prefecture 305-8577, Japan

Result/Main Finding

Acknowledgment

This study is supported by the Ministry of Education, Culture, Sports, Science and

Technology, Japan, under the Japanese Government MEXT: Monbukagakusho Scholarship program.

