Quantifying the Impacts of land cover change on hydrological responses under SSP-RCP Scenario Ermias Sisay Brhane¹ and Koji Dairaku¹ ¹ University of Tsukuba, Tsukuba City, Ibaraki Prefecture 305-8577, Japan

Introduc

- Land use land cover (LULC) change induc activities is one of the major causes of ch watershed processes (Rogger et al., 201
- For example, developing region like Ethic population, which is having a significant deforestation, rapid urbanization, and agr subsequently modifying the hydrological Ethiopia, particularly the Upper Blue Nile

Research Questions

We address the following scientific question

- 1.What are the expected impacts of LULC ch Upper Blue Nile basin?
- 2. How do these predicted impacts vary as a uncertainties?

Aim/purpose of the Research

The major objectives of this study are

- 1.To predict the changes in hydrological pro future changes in LULC and
- 2.To understand the contribution of uncerta parameterization to the hydrologic project

tion		
ed by rapid anthropogenic		Res
nange in hydrological and		Up
6).		Т
		u
opia are facing rapid growth in		
impact on LULC dynamics throu	ugh	
ricultural intensification,		
cycle in many river basins of		12°0'0"N
basin (Abay).		2
		N0,0.01
IS		
hanges on the water balance of	fthe	
		N_0.0.8
a result of model parameter		
		Two
		lanc
		ПТ
ocesses owing to historical and		la
ainty from hydrologic		C
tions due to LULC change.		

hanges on water balance based on different SSP-RCP scenarios

Quantifying the Impacts of land cover change on hydrological responses under SSP-RCP Scenario Ermias Sisay Brhane¹ and Koji Dairaku¹ ¹ University of Tsukuba, Tsukuba City, Ibaraki Prefecture 305-8577, Japan

a model setup period (table)

Water balance components (mm)

Precipitation: PREC Surface runoff: SUR Q Groundwater: GW_Q Percolation out of soil: PERCO Actual evapotranspiration: ET **Evapotranspiration: ET**

in mm.

Quantifying the Impacts of land cover change on hydrological responses under SSP-RCP Scenario Ermias Sisay Brhane¹ and Koji Dairaku¹ ¹ University of Tsukuba, Tsukuba City, Ibaraki Prefecture 305-8577, Japan

