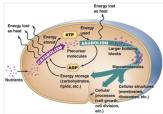


Resource allocation strategies behind rate-yield phenotypes in *E. coli*

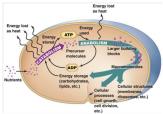

V.Baldazzi, D.Ropers, J-L.Gouzé, T.Gedeon H.de Jong

eLife 12:e79815 (2023)

Context

Bacterial growth involves

- the conversion of nutrients to biomass
- energy stored in nutrients transferred to energy cofactors (ATP) driving the biomass synthesis
- coupled energy and mass fluxes



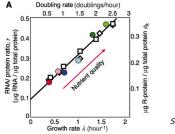
Context

Bacterial growth involves

- the conversion of nutrients to biomass
- energy stored in nutrients transferred to energy cofactors (ATP) driving the biomass synthesis
- coupled energy and mass fluxes

Two macroscopic criteria characterize microbial growth:

- growth rate *i.e.* the speed of conversion of nutrients into biomass
- growth yield *i.e.* the efficiency of the process

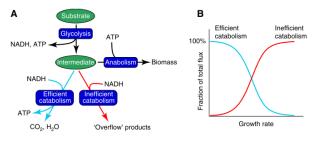

Biomass produced Nutrient consumed

Bacterial growth and resource allocation

Bacterial growth has been analyzed from the perspective of proteome allocation:

- Proteins are main component of biomass
- Proteins catalyze reactions necessary for growth
- Proteome composition reflects resource allocation strategy

Relation between resource allocation and rate and yield.

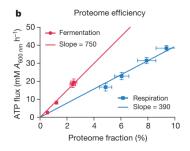


• Linear relation between growth rate and ribosomal protein fraction

Scott et al. (2010)

Bacterial growth and resource allocation

Overflow metabolism:

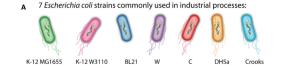

Molenaar et al. (2009); Basan et al. (2015)

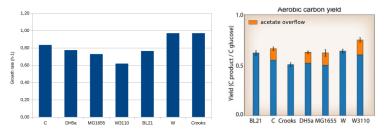
- Switch from high-yield respiration to a low-yield fermentation for high growth rates
- Trade-off between ATP yield and investment in enzyme synthesis
 - > Gain in proteome efficiency through fermentation

nnin_ INRAR

Bacterial growth and resource allocation

Overflow metabolism:


Molenaar et al. (2009); Basan et al. (2015)


- Switch from high-yield respiration to a low-yield fermentation for high growth rates
- Trade-off between ATP yield and investment in enzyme synthesis
 - > Gain in proteome efficiency through fermentation

- INRAP

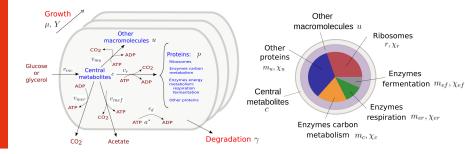
Phenotypic variability in bacterial growth

In same conditions, different *E. coli* strains show large variations in growth rate and yield

Innin_ INRAR

Questions

- What is the range of rate-yield phenotypes predicted by changes in proteome composition?
- Does the predicted range correspond to observed rate-yield variability?


Approach

Develop a coarse-grained model of **coupled energy and mass fluxes** in microorganisms, based on minimal assumptions

Baldazzi et al. (2023)

Inría INRAE

Model definition

- Macroscopic reactions for carbon uptake and metabolism, biomass synthesis, ATP production
- Biomass $B = \beta$ (Proteins + Other macromolecules + Metabolites)
- 5 allocation parameters χ_u, χ_r, χ_c, χ_{er}, χ_{ef} define the resource allocation strategy of the cell (Σ_i χ_i = 1)

nnía INRAQ

Model equations

Carbon balance:

$$\begin{aligned} \frac{dc}{dt} &= v_{mc} - v_{mer} - \rho_{mef} v_{mef} - \rho_{ru} \left(v_r + v_{mu} \right) - \left(\mu + \gamma \right) c, \\ \frac{du}{dt} &= v_{mu} - \left(\mu + \gamma \right) u, \\ \frac{dr}{dt} &= \chi_r v_r - \left(\mu + \gamma \right) r, \\ \frac{dm_u}{dt} &= \chi_u v_r - \left(\mu + \gamma \right) m_u, \\ \frac{dm_c}{dt} &= \chi_c v_r - \left(\mu + \gamma \right) m_c, \\ \frac{dm_{er}}{dt} &= \chi_{er} v_r - \left(\mu + \gamma \right) m_{er}, \\ \frac{dm_{ef}}{dt} &= \chi_{ef} v_r - \left(\mu + \gamma \right) m_{ef}. \end{aligned}$$

Energy balance:

$$rac{da^*}{dt} = n_{mer} \, v_{mer} + n_{mef} \, v_{mef} - n_r \, v_r - n_{mu} \, v_{mu} - v_d$$

Inría INRAE

Assumptions

Total biomass concentration

•
$$1/\beta = (m_c + m_{er} + m_{ef} + r + m_u + u + c)$$

Inría INRAE

Total biomass concentration

•
$$1/\beta = (m_c + m_{er} + m_{ef} + r + m_u + u + c)$$

Total concentration of energy co-factors

• $a + a^* = a_0$ by some undefined mechanisms

(nría INRAE

Total biomass concentration

•
$$1/\beta = (m_c + m_{er} + m_{ef} + r + m_u + u + c)$$

Total concentration of energy co-factors

• $a + a^* = a_0$ by some undefined mechanisms

Rates

• Michaelis-Menten kinetics to define the reaction rates

$$v_r(r,c,a^*) = r k_r \frac{c}{c+K_r} \frac{a^*}{a^*+K_{ar}}$$

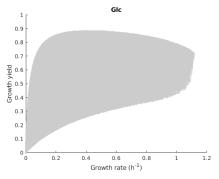
• Constant external substrate concentration S

$$v_{mc}(m_c) = m_c \, k_{mc} \, \frac{S}{S + K_S} = m_c \, e_s$$

Model calibration

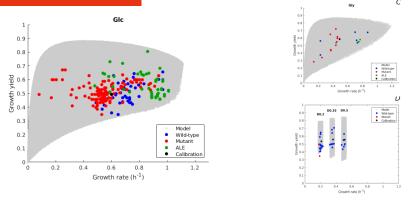
We used different datasets for *E.coli* BW2115 on minimal medium:

- Metabolite concentrations from Bennet et al. (2009), Gerosa et al. (2015)
- Protein concentrations from Schmidt et al. 2016
- Metabolic fluxes from van Rijsewijk and al. (2011), Gerosa et al. (2015)
- 1. Use literature information to estimate the total biomass density, the total protein and metabolites concentrations
- 2. Use proteomics and metabolomics data to estimate the concentrations of the different constituents distinguished in the model, based on **proportions**
- 3. Derive rate parameters using the fluxes and concentrations


Different carbon sources: glucose, glycerol Different culture conditions: batch, chemostat

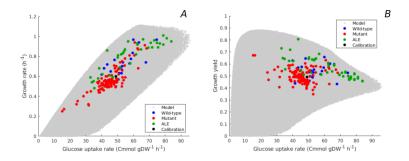
- 1. Random sampling of $(\chi_u, \chi_r, \chi_c, \chi_{er}, \chi_{ef})$ values
- 2. Numerical simulation and steady-state computation (variables, fluxes)
- 3. Plot of steady-state growth rate (μ) vs yield (Y):

$$\mu = \frac{1}{B} \frac{dB}{dt}$$
$$Y = \frac{1}{\beta} \frac{\mu}{v_{mc}}$$


- No optimisation!
- Fixed environment

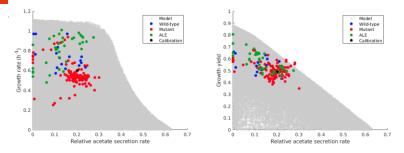
Predicted vs observed rate-yield phenotypes

- Maximum yield increase at low growth rates: lower burden of the non-growth-associated maintenance costs
- Trade-off between rate and maximum yield at higher growth rates


Predicted vs observed rate-yield phenotypes

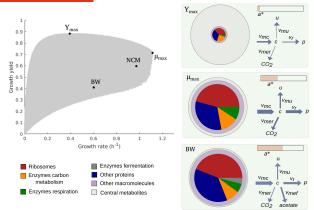
- Maximum yield increase at low growth rates: lower burden of the non-growth-associated maintenance costs
- Trade-off between rate and maximum yield at higher growth rates
- Very good agreement with data from different E. coli strains

Innin_ INRAR


Predicted vs observed fluxes

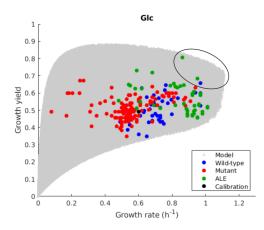
- Correlation between growth rate and glucose uptake
- Additional trade-off between maximum growth yield and glucose uptake (*Cheng et al. (2019*))

Innía INRAE

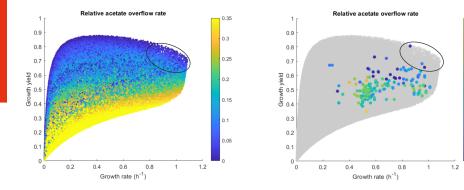

Predicted vs observed fluxes

- Trade-off between acetate secretion rate and growth yield
 - > maximum growth yield requires respiration
- No relation between growth rate and acetate secretion rate
 - > high growth rates are possible for a wide range of ATP production modes
- Existence of wild-type and ALE (Artificial Lab Evolution) strains with high growth rate and no fermentation

naía - INRAR


Opening the black box...

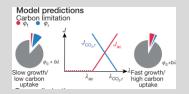
- Model allows to connect rate-yield phenotypes to the underlying resource allocation strategies
- Tight and complex relation between resource allocation, biomass composition and fluxes


Innía INRAE

Focus on a specific rate-yield phenotype: high rate and high yield

Ínría INRAE

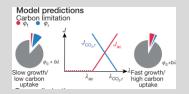
Focus on a specific rate-yield phenotype: high rate and high yield



Inría INRAE

Accepted view

 \Rightarrow


- Fast growth needs a larger ribosomal fraction
- Switch from respiration to fermentation allows to *free* proteome resources for growth
 - > Fermentation requires less protein than respiration
- Overflow metabolism is required for fast growth

Basan et al. (2015)

Accepted view

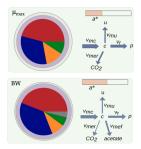
- Fast growth needs a larger ribosomal fraction
- Switch from respiration to fermentation allows to *free* proteome resources for growth
 - > Fermentation requires less protein than respiration
- Overflow metabolism is
 required for fast growth

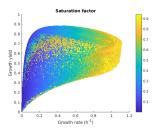
Basan et al. (2015)

Which resource allocation strategies can lead to **fast and efficient** growth?

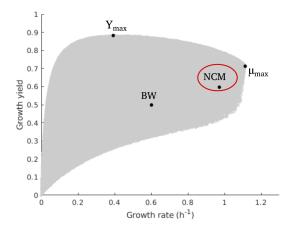
Strategies for fast and efficient growth

Fast and efficient growth rate is supported by:

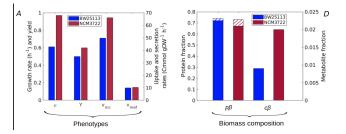

- increased nutrient uptake
- increased protein synthesis


but...

- total protein (ribosome) concentration is lower
- ATP concentration is reduced


 \Rightarrow Increased enzyme saturation thanks to increased metabolite concentration

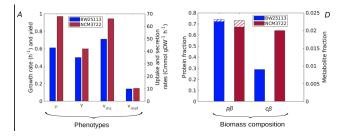
$$v_r = k_r r \frac{c}{c + K_r} \frac{a^*}{a^* + K_{ar}}$$

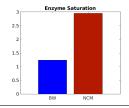

How these results compare to known observations?

Ínría INRAE

How these results compare to known observations?

NCM vs BW phenotype:


- Increased uptake rate v_{mc}
- Increased metabolite fraction

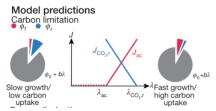

Strategies for fast and efficient growth

How these results compare to known observations?

NCM vs BW phenotype:

- Increased uptake rate v_{mc}
- Increased metabolite fraction

What about the strategy found by Basan et al.?


Our model reduces to the one of Basan et al. when assuming

- The concentrations of metabolites, ATP and other macromolecules are **constant**
- Biomass = Total proteins mass

Under these hypotheses:

$$v_r = k_r r \frac{c}{c + K_r} \frac{a^*}{a^* + K_{ar}} = k'_r r,$$

$$v_{mer} = k'_{mer} m_{er},$$

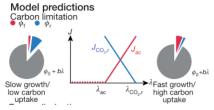
$$v_{mef} = k'_{mef} m_{ef} \dots$$

The trade-off between enzymes and metabolites is no longer possible!

What about the strategy found by Basan et al.?

Our model reduces to the one of Basan et al. when assuming

• The concentrations of metabolites, ATP and other macromolecules are **constant**


r.

• Biomass = Total proteins mass

Under these hypotheses:

$$v_r = k_r r \frac{c}{c + K_r} \frac{a^*}{a^* + K_{ar}} = k'_r$$
$$v_{mer} = k'_{mer} m_{er},$$
$$v_{mef} = k'_{mef} m_{ef} \dots$$

The trade-off between enzymes and metabolites is no longer possible!

Our model allows to account for alternative resource allocation strategies

- Coarse-grained model of coupled mass and energy fluxes based on minimal assumptions
- Model can reproduce the observed variability in *E. coli* rate-yield phenotypes

> resource (protein) allocation strategy as a major determinant Model helps to better understand cell functioning and capabilities:

- Common lab *E.coli* strains are not optimal for growth on a single substrate
- Fermentation is not required for high growth rates

> some evolved strains only use respiration

• Strategies for fast and efficient growth can be achieved by enzyme saturation

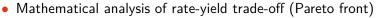
> importance to account for metabolites in biomass composition

nnin_ INRAE

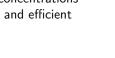
Perspectives

0.9

0.7 yield


(0.5 0.4

0.3 0.2


From the experimental side:

- Better characterize interesting ALE strains
- Explore the (low-rate)-high yield zone
- Apply to other organisms

From the theoretical side:

- Dynamics of resource allocation
 - > regulatory function for χ s as a function of concentrations
 - > explanation of strain evolution towards fast and efficient growth

Wild-type

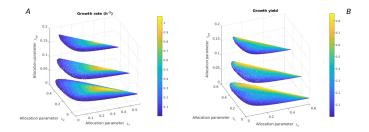
Glo

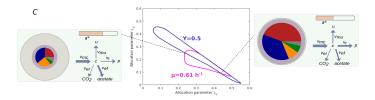
Growth rate (h-1)

0.4

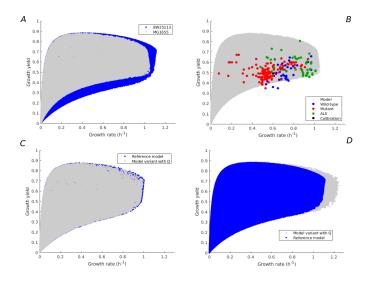
Open PhD position at Inria-INRAE

Multi-omics data integration for the analysis of microbial community dynamics in plant leaves collab. Simon Labarthe (Inria Bordeaux, France)

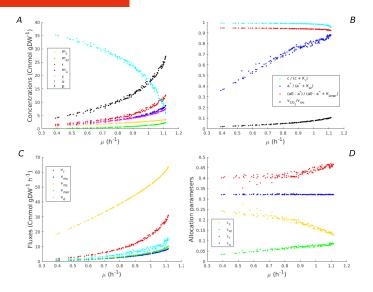

Thank you for your attention!


Any questions?

Ínría INRAE


$$\mu = \frac{1}{B} \frac{dB}{dt} = \beta \frac{1}{B} \frac{d(M_u + R + M_c + M_{er} + M_{ef} + C + U)}{dt}$$
$$= \beta (v_{mc} - v_{mer} - \rho_{mef} v_{mef} - (\rho_{ru} - 1)(v_r + v_{mu})) - \gamma$$

$$Y = \frac{1}{\beta} \frac{\mu}{v_{mc}} = \frac{v_{mc} - v_{mer} - \rho_{mef} v_{mef} - (\rho_{ru} - 1)(v_r + v_{mu}) - \gamma/\beta}{v_{mc}}$$



Inría INRAE

Ínría INRAE

Pareto front

Ínría INRAE

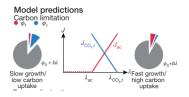
ATP yield coefficients set from literature data

ATP cost for biomass synthesis: theoretical values from literature + correction for energy spilling

Affinity Constants following Bennet et al. (2009) we assumed that

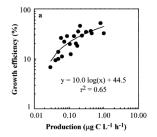
- reactions involved in central carbon metabolism approximately work in the linear regime i.e. Michaelis-Menten constant close to substrate concentration (K_m values from Dourado et al. (2001))
- reactions involving ATP/NAD+ cofactors are saturated (K_m >> ATP/NAD+ concentrations
- reactions involving ADP/NADH work in a linear regime, with K_m values close to their cofactor value

Comparison to Basan model

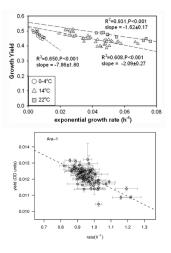

Our model can be simplified to the one of Basan's using the following assumptions:

- 1. Assume that concentration of carbon metabolites and other macromolecules are constant and negligible with respect to proteins
 - > Biomass \approx Proteins
 - > Linear rates v = kE
- 2. Neglect energy dissipation v_d

3.
$$(\mu + \gamma) c$$
 small


 \Downarrow

At high μ the fraction of fermentation protein increases thanks to their lower protein cost ($n_{mef}k_{mef} > n_{mer}k_{mer}$).

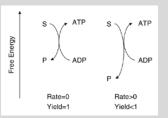

The relation between growth and yield is complex:

• A positive relation has been observed in nutrient-limited aquatic ecosystems *Smith & Praie* (2004)

The relation between growth and yield is complex:

- A positive relation has been observed in nutrient-limited aquatic ecosystems *Smith & Praie* (2004)
- A trade-off has been observed in natural and laboratory communities Lipson (2009), Novak et al. (2006)

naío - INRAR

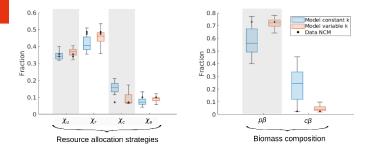

Trade-off between growth rate and yield

At the reaction level:

Thermodynamic trade-off

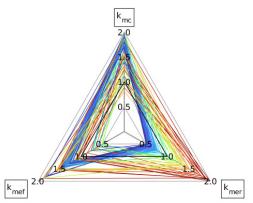
- Rate is proportional to ΔG
- Maximal yield for $\Delta G = 0$

McLean (2008)



At the system level

- ATP-producing pathways with different ATP yield
- catabolism-anabolism imbalance
 - > energy-spilling reactions


Model predictions for NCM-like phenotype

- Look for resources allocation strategies giving the expected (μ , Y, v_{mc}, v_{mef}) for NCM strain
- Comparison to NCM proteomic data
 - 1. constant metabolic rates
 - 2. variable metabolic rates : kmc, kmer, kmef

NCM predictions

