Microbial community assembly and competition in boom-and-bust environments

Sergei Maslov

Department of Bioengineering & Department of Physics

Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign

Zihan Wang Akshit Goyal

Z Wang, A Goyal, S Maslov, bioRxiv, July 26, 2023

Astrology → Astronomy

Nostradamus → Brahe → Kepler, Newton

$\frac{\text{Biology} \rightarrow \text{Bionomy}}{\text{Terrence Hwa}^{\circ}}$

Ecology → Economy

Physiology \rightarrow Physiognomy

Slow progress in models predicting microbial community assembly

- I started modeling microbial communities
 8 years ago, hoping to make predictions
- Growth is described by Monod equation:

$$g(R) = \frac{g_{max}R}{R+K}$$

• For steady state in a chemostat $R \ll K$ so

$$g(R) = \frac{g_{max}}{K}R$$

chemostats are to study oligotrophs not copiotrophs

 But K varies a lot between strains, depends on growth history, and is hard to measure!

<i>E. coli</i> strain	Т (°С)	K_s (µg liter ⁻¹)	$_{(h^{-1})}^{\mu_{max}}$	Cultivation method	Refer- ence	
ML 30	40	34 ^a	0.75	Chemostat	135	•
Н	37	4,000	0.94	Batch	166	Karin Kovárová-Kovar Thomas Egli
B/r Thy ⁻	37	180	1.04	Batch	260	
ML 308	37	3,400	0.75	Batch	125	
B/r CM6	37	540	NR^{c}	Batch	19	
K-12	37	7,160	0.76	Batch	52	Growth Kinetics of
ML 308	37	107	0.54	Chemostat	129	
		2,340	1.23	Batch		Suspended Microbial
ML 30	37	53	0.80	Chemostat	224	Cells: From Single-
		72	0.92			Substrate-Controlled
ML 30	37	33^a	0.76	Chemostat	34	Substrate-controlled
B/r Thy ⁻	30	180	NR	Batch	260	Growth to Mixed-
NR^{c}	30	77,000-99,000	0.92 - 1.05	Chemostat	222	Substrate Kinetics.
ML 30G	30	68^{b}	0.78	Batch	226	
		12,600				
ML 30	28.4	33^a	0.54	Chemostat	34	Microbiol Mol Biol Rev
O-124	26	2,400	0.55	Batch	49	62.646–666 (1998)
OUMI7020	20	8,460 ^b	0.55	Batch	109	
		46,800				
NR^{c}	20	8,000	0.65	Chemostat	111	
ML 30	17.4	33^a	0.19	Chemostat	34	

TABLE 2. Kinetic constants and their temperature dependenciesfor *E. coli* grown with glucose as the sole sourceof carbon and energy

Microbial community dynamics is often not in steady state but boom-and-bust

We model this (chemostat)

Many real ecosystems are dominated by <u>copiotrophs</u> not <u>oligotrophs</u> (e.g., algal blooms)

But in the lab we do this (serial dilution/passage = = batch growth)

Boom-and-bust model parameters are easy to measure

To model batch growth one needs to know:

- The maximum growth rate $g_i^{(max)}$ on each resource
- The lag times τ_{ij} and dilution factor D>1
- The resource hierarchy or co-utilization ratio

FIG. 9.—Diauxie. Growth of *E. coli* in synthetic medium with glucose + sorbitol as carbon source.

The figures between arrows indicate total growth corresponding to each cycle.

- (a) Glucose 50 μ g. per ml.; sorbitol 150 μ g. per ml.
- (b) Glucose 100 μ g. per ml.; sorbitol 100 μ g. per ml.
- (c) Glucose 150 μ g. per ml.; sorbitol 50 μ g. per ml.

Total growth corresponding to first cycle is proportional to glucose concentration. Total growth of second cycle is proportional to sorbitol concentration (11).

Monod (1949) The Growth of Bacterial Cultures. Annual Reviews in Microbiology

Use case scenario

- Your experimentalist friend has a favorite set of n_S species: the "dream team"
- He needs to keep <u>all species alive</u> in a serial passage (dilution) experiment
- We can provide the following services:
 - Determine if these species can in principle stably coexist on a given set of n_R resources
 - Design the resource ratio R₁: R₂: R₃ for this community to successfully assemble
 - Bonus. Tune the resource ratio for a desired species abundance ratio $N_1: N_2: N_3$

The boom phase is defined by resource depletion times T_i

How to generalize Tilman's graphical method of from chemostats to serial dilution?

Wang, Z., et al. *Nature communications*, *12*(1), 6661 (2021)

Wang, Z., et al. *Nature communications*, *12*(1), 6661 (2021)

Time to deplete resource R₂ (T₂)

Feasibility: can these species in principle coexist? These two cannot

Wang, Z., et al. *Nature communications*, *12*(1), 6661 (2021)

Change from resource depletion times to duration of temporal niches

- For n resources there are 2ⁿ-1 possible temporal niches
- Resource depletion order (e.g., T₁<T₃ <T_{2...}<T_n shown) determines which <u>n temporal niches</u> (t₁,t₂,t₃,...t_n) are realized
- To test feasibility, one needs to go through all of n! possible depletion orders

Feasibility of the steady state

- $G_{\alpha i}$ is the growth rate of bug α in niche /
- Fix the depletion order $T_1 < T_3 < T_2 \dots < T_n$
- Without lags: $\sum_i G_{\alpha i} t_i = \log D$
- With lags: $\sum_{i} G_{\alpha i} (t_i \tau_{\alpha i}) = \log D$
- $\sum_{i} G_{\alpha i} t_{i} = \log D + \sum_{i} G_{\alpha i} \tau_{\alpha i} = \log D_{\alpha}$ can be formally solved as

$$\boldsymbol{t}_i = \hat{G}^{-1} \cdot \overrightarrow{\boldsymbol{\log D}}_{\alpha}$$

- The steady state is feasible if all t_i>0
- |det(G)| = stability against variations in lags
- We separately test for dynamical stability

Feasibility of a random community with identical hierarchies

$$ec{z_i} = egin{bmatrix} z_{lpha i} \ z_{eta i} \ z_{\gamma i} \end{bmatrix} \sim egin{bmatrix} g_{lpha i} \ g_{eta i} \ g_{\gamma i} \end{bmatrix} - egin{bmatrix} \mu_{lpha i} \ \mu_{eta i} \ \mu_{\gamma i} \end{bmatrix}$$

Unfeasible assembly (promoted by correlated growth rates)

$$P_{\text{feasible}}(n_S, n_R) = 1 - \left(\frac{1}{2}\right)^{n_R - 1} \cdot \sum_{j=0}^{N_S - 2} \binom{n_R - 1}{j}$$

$$P_{\text{feasible}}(n_S, n_S) = \left(\frac{1}{2}\right)^{n_S - 1}$$
 $P_{\text{feasible}} \sim 0.5 \text{ when } n_R = 2n_S$

Tradeoffs promote the likelihood of assembly (see Posfai et al PRL 2017) Supebugs suppress the likelihood of assembly (V. natriegens will win)

Z Wang, A Goyal, S Maslov, bioRxiv, July 2023

At what resource concentration ratios is this coexistence possible?

Normalized structural stability=

Z Wang, A Goyal, S Maslov, bioRxiv, July 2023

Can we use our engineered assembly methods to compare the success of different metabolic strategies in real-life ecosystems?

Microbial metabolic strategies

ScienceDirect

Hierarchical and simultaneous utilization of carbon substrates: mechanistic insights, physiological roles, and ecological consequences Hiroyuki Okano¹, Rutger Hermsen² and Terence Hwa¹

Bacteria grown on a mixture of carbon substrates exhibit two utilization patterns: hierarchical utilization (HU) and simultaneous utilization (SU). How and why cells adopt these different behaviors remains poorly understood despite decades of research. Recent studies address various open underlying these utilization patterns. Here we review recent experimental and modeling studies that have provided fresh insights into this classical topic.

Hierarchical utilization (HU) refers to cases in which the

- Regulatory mechanisms: known well in model organisms.
 But may need 282 variables/476 parameters to describe
- Physiological role: understood through proteome allocation
 → growth optimization. But species do not always optimize proteome allocation
- Ecological consequences: poorly understood

How do we choose growth rates in our model?

• $g_i^{(max)} \rightarrow \lambda_i$ we follow the notation from Hermsen et al. MSB (2015)

$$\bullet \frac{\lambda_i}{1 - \lambda_i / \lambda_c} = N(0.5, 0.1), \lambda_c = 1$$

•
$$\lambda_{ij} = \frac{\lambda_i + \lambda_j - 2\lambda_i \lambda_j / \lambda_c}{1 - \lambda_i \lambda_j / \lambda_c^2}$$
 for co-utilizing species

Metabolic strategies we compare

- ``Smart'' sequential utilization:
 - resource hierarchy matches that of growth rates
- Random sequential utilization:
 - resource hierarchy is not correlated with growth rates
- ``Top smart" sequential utilization:
 - top resource has the fastest growth rate. Other resources
 random hierarchy (inspired by Z Wang, et al Nat Comm 2021)
- Co-utilization strategy:
 - proteome equally allocated among the remaining resources. Growth rate – average among growth rates on these resources

Mature communities have complementary resource preferences and no "anomalous species"

Only top resource is
complementaryAnomalous species = top preference
is not the fastest growth resource

Wang Z, Goyal A, Dubinkina V, George AB, Wang T, Fridman Y, Maslov S, . Nat Comm. 2021

Structural stability

Feasibilityeasibility

Helowlikieleylysishtatathte éd dramantetæran í čara hestadsleyna bsed?bled?

Normalized to random:
$$\frac{1}{2^{n_s-1}} \rightarrow 1$$

Dynamical stability spectra

Dynamical stability fraction

Chaotic solutions are possible but rare: <1 out of 10,000

What if the number of resources you have access to is too low?

Robots to the rescue!

- Blox Bloxham et al., bioRxiv (2023):
 - In principle: $n_{species} \leq 2^{n_{resources}} 1$
 - In practice in randomly fluctuating environments: $n_{species} \sim (n_{resources})^2$
- We can beat it by using robots to add prescribed different nutrient ratios at different cycles

Success rates of assemblies for smart diauxers

Z Wang, A Goyal, Y. Fu, Y. Fridman, S Maslov, in preparation

Take home messages and open questions

- We can engineer resource ratios for a given set of species to co-exist in boom-and-bust environments
 - Bonus 1: we can make any desired relative species abundances
 - Bonus 2: we can break the competitive exclusion principle: $n_{species} \leq n_{resources}$ potentially going up to $n_{species} = 2^{n_{resources}} - 1$
- We can compare different metabolic strategies to each other. Next steps:
 - Ecology and evolution of the optimal tradeoff between shorter lags and reduced growth rate due to preallocated enzymes
 - Include crossfeeding diauxie (glucose-acetate)
 - Can we explain deviations from optimal hierarchy by the success of the top smart sequential strategy?

