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Abstract

We will start with the basic laws of thermodynamics, and see a few fundamental implications in enzyme
catalysis and metabolism (including flux direction constraints, the Haldane relationship, and the flux-
force relationship). We will also learn how to apply these laws to constraint-based metabolic models,
and when selecting parameters for kinetic models. Finally, we will see how thermodynamics can also be
used in optimization problems, such as the Max-min Driving Force (MDF) algorithm. Exercises will be
carried out in Python. A good MILP solver (CPLEX or GUROBI) is recommended but not necessary.
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1 Introduction

1.1 The laws of thermodynamics

If you can read French, you might be interested in Sadi Carnot’s original book about thermodynamics:
“Réflexions sur la puissance motrice du feu et sur les machines propres à développer atte puissance” [4].

Over the years, thermodynamic theory developed further and is now typically stands upon 4 laws (or
axioms):

• 0th law – thermodynamic equilibrium is a transitive property.

• 1st law – energy is conserved.

• 2nd law – the entropy of an isolated system (such as the entire universe) can only increase over
time.

• 3rd law – a perfect crysal structure at absolute zero will have no entropy.

In metabolic cell models, we assume that no work is done by the system and that it is isobaric
and isothermal. Another fundamental principle in enzymatic catalysis is the notion that enzymes can
accelerate the rate of a reaction, but not change its thermodynamic equilibrium, therefore they have no
effect on the direction of flux. Instead, reaction directions are entirely determined by the Gibbs free
energy.

1.2 Biochemical reactions

Metabolism consists of individual biochemical reactions of the form:

νA A + νB B︸ ︷︷ ︸
substrates

J+−−⇀↽−−
J−

νC C + νD D︸ ︷︷ ︸
products

(1)

where the uppercase letters represent the substrates and product as chemical entities, ν∗ are the respective
stoichiometric coefficients, and J∗ are the forward (+) or backward (−) rates. Biochemical reactions
occur in aqueous environments where each metabolite has a certain concentration. We will represent
these concentrations by c∗, and define the reaction quotient as

Q′ =
cνC

C · cνD

D

cνA

A · cνB

B

, (2)

or more generally (with an arbitrary number of reacting substrates and products):

Q′ =
∏

i∈products

cνi
i ·

∏
j∈substrates

c
−νj

j . (3)

Now, we can define an thermodynamic equilibrium as a state where the forward and backward fluxes
are equal (i.e., J+ = J−). For all possible equilibrium states, the reaction quotient will always have the
same value, which is denoted Keq – the equilibrium constant. Note that there can be many different
states of equilibrium, meaning that the individual metabolite concentrations don’t have to be always the
same. However, Q′ will always be equal to Keq at equilibrium.

1.3 The Gibbs free energy of reaction

The second law of thermodynamics states that entropy can only increase over time in an isolated system.
In living cells, which are open systems in constant pressure, temperature, and pH, entropy can be replaced
by the concept of transformed Gibbs free energy of reaction [1], denoted ∆rG

′. Then, for a chemical
reaction to be feasible, it must impose a negative change in ∆rG

′:

∆rG
′ < 0 (4)

When the reaction reaches the minimum energy state, it will be at equilibrium and ∆rG
′ will be equal

to 0. On the other hand, if the reaction passes the equilibrium (e.g. someone adds a high concentration
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Figure 1: Cartoon representation of Gibbs free energy of reaction and the thermodynamic equilibrium. As a
chemical reaction proceeds, the concentrations of substrates and products change, which in turn affect the ‘energy
in the chemical system’. We can, thus, capture the reaction advancement in a graph, where the x-axis represents
the reaction advancement (i.e. the concentrations of substrates and products at different times in the reaction
course) and the y-axis the internal energy of the system. The Gibbs free energy of reaction, in a way, indicates the
position of the system in this graphical representation, where the thermodynamic equilibrium would be the energy
minimum. At equilibrium, reaction Gibbs free energy would be zero, allowing us to derive the relation between
substrate and product concentrations at that point and their free energy of formation. This relation is known as
the equilibrium constant of the reaction.

of the product to the solution), then ∆rG
′ can be positive, and the reaction will spontaneously go in the

reverse direction (see Figure 1).
We already said that the presence of enzymes does not affect the ∆rG

′ directly, so what does actually
determine its value? We typically use the assumption that biochemical reactions occur in dilute aqueous
solutions. In this case, the transformed Gibbs free energy of reaction j is given by:

∆rG
′ = ∆rG

′◦ +R · T · ln(Q′) (5)

where R is the gas constant, T is the temperature (in Kelvin). ∆rG
′◦ represents the ∆rG

′ in standard
conditions, which are typically defined as 1 M for each one of the reactants. One way to measure ∆rG

′◦,
is to let the reaction run until it reaches equilibrium, and measure the concentrations of all reactants.
Also, since we know that at equilibrium ∆rG

′ = 0, we can solve for ∆rG
′◦
j and get:

∆rG
′◦ = −R · T · ln(Keq) = −R · T ·

 ∑
i∈products

νi ln(c
eq
i ) −

∑
j∈substrates

νj ln(c
eq
j )

 (6)

where ceq∗ are the measured molar concentrations of the reactants at an equilibrium state.
You can find measured values for Keq (based on equation 6) on randr.nist.gov. Unfortunately, only

a small fraction of known biochemical reactions have been measured. eQuilibrator is an alternative that
covers almost all enzyme-catalyzed reactions. Its predictions are based on the component contribution
method [18].

For one of the best introductions to thermodynamics of biochemical reactions, read the book by
Alberty [1].

1.4 Enzyme kinetics and the connection to thermodynamics

It is a well cited fact, that enzymes can catalyze the rate of a given reaction, but cannot alter the
direction of net flux. In the following section (1.5), we will see that an enzyme cannot even change the
ratio between the forward and backward rates, only increase both of them proportionally.

But, is the converse true as well, or can information about the thermodynamics of a reaction tell us
something about an enzyme catalyzing it? The answer is: yes, it can.

Mellors [12] explained how the relationship first described by JS Haldane in 1930 connects between an
enzyme’s kinetic parameters and the reaction’s equilibrium constant. Imagine an enzyme that catalyzes
a reaction S ⇌ P , whose flux is given by the following rate law:

v = E
k+cat · s/Ks − k−cat · p/Kp

1 + s/Ks + p/Kp
. (7)

where E is the enzyme concentration, k+cat and k−cat are the forward and backward turnover numbers, Ks

and Kp are the affinity constants, and s and p are the concentrations of the substrate and product. This
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rate law is sometimes mistakenly called reversible Michaelis-Menten kinetics, but is actually attributed
to Haldane. He proved that given the standard assumptions about the catalytic energy profile, the
following equation must be satisfied:

K ′
eq =

k+cat ·Kp

k−cat ·Ks

. (8)

This equation is commonly known as the Haldane relationship.

1.5 The flux-force relationship

From the work of Beard and Qian [2], we know that there is a relationship between the thermodynamic
driving force and the ratio of forward and backward reaction rates:

J+

J− = e−∆rG
′/RT (9)

where the forward rate (J+) and the backward rate (J−) are the two opposing rates of a reversible
reaction. The net flux is given by:

J = J+ − J− (10)

When a reaction is close to equilibrium, e.g. when ∆rG
′ > −10 kJ/mol, the backward rate can become

quite large and significantly reduce the net rate. At equilibrium (∆rG
′ = 0), both forward and backward

rates become equal and the net rate is zero.
The effect of the flux-force relationship can be explicitly quantified in a reformulation of the reversible

Haldane rate law (equation 7), which we call the separable form [16]:

v = E · k+cat · ηrev · ηsat

ηrev = 1− e∆rG
′/RT

ηsat =
s/Ks

1 + s/Ks + p/Kp
.

(11)

E is the enzyme concentration and k+cat is the turnover rate (measured in the forward direction). The
saturation term ηsat is similar to an (irreversible) Michaelis-Menten rate law, except that there we usually
ignore the product term (p/Kp) in the denominator. The reversibility term ηrev is exactly the part that
reflects how reversibility decreases the net flux. Both terms are always between 0 and 1.

For further reading on the flux-force relationship and how it can be used to restructure kinetic, see
[17].

1.6 Linear Programming (LP)

Every Linear Programming problem (see Figure 2) can be converted to a canonical form that is:

Primal

maximize c⊤x

subject to Ax ≤ b

and x ≥ 0 . (12)

The dual is a symmetrical linear problem described by the following constraints

Dual

minimize b⊤y

subject to A⊤y ≥ c

and y ≥ 0 . (13)

If the primal has an optimal solution (x∗), then the dual will also have an optimal solution (y∗) and
their values will be equal:

Strong duality theorem

c⊤x∗ = b⊤y∗ (14)

Linear Programming problems can be solved very efficiently using established algorithms such as
Simplex. Many good solvers exist for LP, including open source options such as glpk, CLP, and the
internal R-project solver.

4



Linear Programming Quadratic Programming

x*

x*

Figure 2: A graphical example for a problem with linear constraints, where the objective is either a linear function
(Linear Programming) or a quadratic function (Quadratic Programming).

1.7 Quadratic Programming (QP)

Quadratic Programming is essentially the same as LP, except that the objective has an extra quadratic
term:

QP

minimize q⊤x+
1

2
x⊤Qx

subject to Ax ≤ b

and x ≥ 0 . (15)

It can essentially be solved using the same algorithms as LP and is therefore easily scalable. We
recommend the CVXPY package for Python users, but the Matlab function quadprog is an alternative.

1.8 Mixed-Integer Linear Programming (MILP)

If an LP contains variables that can only have integer values (or in a more specific case, boolean values),
the problem cannot be solved using the standard methods. In fact, MILP problems in general are NP-
complete, i.e. computationally hard. The free solvers are typically not very efficient in solving large
MILPs. Nevertheless, advanced commercial solvers such as CPLEX and Gurobi are much more capable,
and provide free licenses for academics.

2 Convex analysis of a metabolic flux cone

The basic idea underlying most metabolic constraint-based models, is mass-balance combined with the
steady-state assumption. Formally, given a stoichiometric matrix S, where rows represent metabolites
and column represent reactions, and given a flux vector v, the rate of change in metabolite levels (c) is
given by the equation.

Dynamic mass-balance

dc

dt
= Sv (16)

All metabolites are separated into two groups, internal and external, where the boundary is typically
defined by the cell outer membrane. However, mathematically, external metabolites are those that
have such large pools (infinite) that we can essentially ignore their change over time even if it is not
0. These include things like atmospheric gases (O2, CO2) or the carbon and nitrogen sources in the
medium surrounding the cells. According to this division, we can represent the stoichiometric matrix as
a concatenation of two sub-matrices:

S =

[
Sint

Sext

]
(17)
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For the subset of internal metabolites, the pseudo steady-state assumption states that their concentra-
tions do not change over time.

Pseudo steady-state

Sintv = 0 (18)

Therefore, pseudo steady-state flux solutions are contained within the null-space (or kernel) of Sint, i.e.
v ∈ ker(Sint).

2.1 The flux cone

Typically, many of the reactions in our model will be considered irreversible, due to thermodynamic
constraints (and we will elaborate on this topic in section 3). Therefore, a subset of the fluxes will be
constrained to be positive:

∀i ∈ Iirr vi ≥ 0 (19)

Therefore, the set of possible flux solutions would be all fluxes that satisfy both equation 18 and 19.
Explicitly, it would be the intersection of all the hyperplanes that represent rows in Sint described by
Sj∗ · v = 0 and all half-spaces corresponding to irreversible reactions ei · v ≥ 0 (where ei is the unit
vector corresponding to reaction i). This intersection is an unbound convex polyhedron denoted the
steady-state flux cone or C [10].

It is important to note, that the flux cone is unbounded in some directions, i.e. it can extend to
infinity. Therefore, we typically ignore the absolute values of the fluxes (represented, for example, by
||v||) and consider only the relative values – i.e. the direction towards which the vector is pointing. It is
often easier to only consider normalized vectors, such as ones whose biomass rate is set to 1.

Flux cone

C = {v ∈ Rn | Sintv = 0 ∧ vi ≥ 0 ∀i ∈ Iirr} (20)

2.2 Elementary Flux Modes

Elementary Flux Modes (EFMs) are defined as the set of all non-decomposable vectors in the flux cone.
A non-decomposable vector is one whose support (the set of reactions with non-zero flux) is minimal –
i.e. the flux cone does not contain any vectors whose support is a proper subset of it. EFMs also form
a convex basis for the flux cone [22]:

∀v ∈ C : ∃λj ≥ 0 s.t. v =
∑
j

λj ej (21)

where {ej}j is the set of all EFMs. Figure 3 illustrates a model with 10 reactions and 9 EFMs.
EFMs are closely related to Extreme Pathways (EPs) and distinguishing them requires more subtle

definitions. For further reading you can refer to [8].

2.3 Classification of EFMs

Even in our small toy example in Figure 3, we already encounter a common problem that arises when
dealing with EFMs – i.e. cycles. In this example, it’s quite obvious that the two EFMs that consist of
combining two opposing reactions is futile and should be ignored. Larger networks, however, might have
much larger cycles that are harder to identify and get rid of.

First, we need to distinguish between primary exchange and currency exchange reactions. The former
are the standard reactions that exchange nutrients between the cell/compartment and its environment
(sugar import, CO2 export, etc.). Currency exchange reactions do not, in fact, exchange material between
compartments, but are rather abstract representations of energy dissipation. A canonical example would
be the ATP maintenance reaction that is present in most metabolic models: ATP + H2O ⇀ ADP + Pi.

Now, we can define the three types of EFMs ([20], see Figure 4):

I – Primary systemic EFMs have at least one active primary exchange flux.
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Figure 3: A toy example with 6 internal reactions and 4 exchange reactions. The flux cone is spanned by 9
EFMs.

II – Futile cycles have no active primary exchange fluxes, and at least one active currency exchange
flux.

III – Internal cycles have no active exchange fluxes (neither primary nor currency).

Figure 4: The three types of Elementary Flux Modes.

To illustrate the three types of pathways, we present another toy model with one currency exchange
reaction and two primary exchange reactions (Figure 5). This model contains all the three types of
EFMs.

Figure 5: A small toy model with 8 internal reactions, 2 primary exchange reactions, and one currency exchange
reaction. In this simple network, one can identify all three types of extreme pathways. The Type I pathway
(green) is typically the type of solution that most constrain-based models are seeking. The Type II pathway
(A → B → C → A, blue) is a typical futile cycle, since it does not involve any primary exchange reactions, but
does waste ATP. The Type III pathway (A → C → D → A, red) is called internal since none of its reactions are
exchange reactions. An internal cycle will never be thermodynamically feasible.

In the next section, we will see how this three type classification is useful to separate thermodynam-
ically feasible pathways from infeasible ones.
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3 Thermodynamics in constraint-based models

We would like to rewrite equation 4 in a more convenient way that corresponds well with our linear
algebra notation. First, one can notice that taking the log from Q′ makes it a linear function of the
log-concentration values: ln(Q′

j) =
∑

i Sij · ln(ci). In addition, from now on we will use a matrix notation
for calculating the vector of all reaction Gibbs energies (∆rG

′):

∆rG
′ = ∆rG

′◦ +RT · S⊤x (22)

where we define x as the vector of log-concentrations, i.e. xi = ln(ci).

3.1 Irreversibility is an approximation

In pure physics terms, every chemical reaction should be reversible. There are cases, where the equilib-
rium is so far from unity, which makes it impossible for the reaction to reach equilibrium in practice. In
these cases, it is sometimes convenient to assume that the reaction is irreversible and complete ignore
the reverse direction. In defining the flux cone, this assumption can significantly reduce the solution
space and number of EFMs.

Most thermodynamics-aware models, however, cannot make this assumption. Every reaction must
have a defined equilibrium constant, no matter how extreme it might be. Therefore, from now on, we
assume ∆rG

′◦
j has a finite value, even for reactions that are defined as irreversible in our model. There

is no universal threshold for ∆rG
′◦
j which make a reaction irreversible. It is context dependent and a

topic of much debate [11, 7, 14].
Beyond ∆rG

′◦
j , probably the most important parameters for determining the reversibility are the

range of concentrations allowed for each of the reactants. Basically, a reversible reaction should have
both positive and negative values to its ∆rG

′
j , depending on the chosen reactant concentrations within

their predefined ranges. If we denote the vectors of lower and upper bounds as bL and bU , respectively,
the constraint on x would be:

ln(bL) ≤ x ≤ ln(bU ) (23)

It is easy to see, that the lowest value for ∆rG
′
j is achieved when all substrate concentrations are set

to their value in bU , and all product concentrations to bL. The highest value of ∆rG
′
j occurs in the

opposite extreme. Then, it become straightforward to check if a reaction is, by itself, reversible or not.

3.2 Thermodynamic Feasibility of EFMs

Given a specific elementary flux mode ej (or any flux vector v, for that matter), we would like to know
whether it is thermodynamically feasible according to the second law. First, every one of the support
reactions must be feasible in the direction defined by ej . However, the same metabolite can be a substrate
for one reaction, and a product for another and therefore there is inter-dependence between the ∆rG

′
j

values of these reactions. Sometimes, even though a series of reactions can be individually feasible, their
combination is infeasible. This has been termed a distributed bottleneck by Mavrovouniotis [11] in 1993.

Using Linear Programming, it is relatively simple to test thermodynamic feasibility:

Feasbility

∃x
such that

∆rG
′ ≡ ∆rG

′◦ +RT · S⊤x

∆rG
′ < 0

ln(bL) ≤ x ≤ ln(bU )

(24)

3.3 Max-min Driving Force

In order to provide a more quantitative measure for the thermodynamic feasibility of a given pathway,
the Max-min Driving Force (MDF) method provides a relatively simple measure. We adjust the Linear
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Program in Equation 24, by adding a margin variable (B) and maximizing its value:

MDF

B∗ = max
B,x

B

such that

∆rG
′ ≡ ∆rG

′◦ +RT · S⊤x

∆rG
′ < −B

ln(bL) ≤ x ≤ ln(bU )

(25)

If the MDF is positive, then there exists a set of concentrations x (inside the allowed range) such that
∆rG

′ ≤ −B < 0, i.e. this pathway is thermodynamically feasible. The larger B is, the “more feasible” it
is, since we can keep all reactions farther away from equilibrium. According to the flux-force relationship
(section 1.5), the farther one is from equilibrium, the lower the backward flux is relative to the forward
and therefore the reaction is more efficient. An example for MDF calculation is given in Figure 6.

An online interface for running MDF analysis can be found here: https://equilibrator.weizmann.
ac.il/pathway/.

Figure 6: (left) Schematic comparison between two pathways. Each pathway starts and ends with the same
compounds, employs five enzymes and carries the same net flux. The kinetic parameters of all enzymes in both
pathways, as well as enzyme and metabolite concentrations, are assumed to be identical. (right) Energetic profile of
Embden-Meyerhof-Parnas glycolysis. Dashed black line corresponds to ∆rG

′◦ values (metabolite concentrations
of 1M) of pathway reactions at pH 7.5. Red line corresponds to ∆rG

′ values of pathway reactions after an
optimization procedure that maximizes the driving force of the thermodynamic bottleneck reactions. Figure is
from Noor et al. [15].

3.4 Thermodynamic Flux Balance Analysis (TFBA)

Thermodynamic FBA (also known as Thermodynamic-based Metabolic Flux Analysis [7]) was designed
to deal with thermodynamically infeasible flux solutions within the framework of FBA:

FBA

v∗ = argmax
v

c⊤v

such that

Sintv = 0

vLB ≤ v ≤ vUB

(26)

where c ∈ Rr is the objective function, and the constants are the internal stoichiometric matrix Sint ∈
Rm×r. vLB and vUB are the lower and upper bounds on the fluxes, typically relevant only for exchange
fluxes.
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TFBA adds another two sets of variables – the boolean flux indicators (y ∈ {0, 1}r), and the log-
concentrations (x ∈ Rr). Then, the following constraints are added to the Linear Problem (which is now
actually a Mixed-Integer Linear Problem – MILP):

TFBA

v∗ = argmax
v

c⊤v

such that

Sintv = 0

vLB ≤ v ≤ vUB

0 ≤ My − v ≤ M (27)

0 < My +∆rG
′ < M (28)

∆rG
′ = ∆rG

′◦ +RT · S⊤x (29)

ln(bL) ≤ x ≤ ln(bU ) (30)

The new constants are the vector of standard Gibbs energies of reaction ∆rG
′◦ (in units of kJ/mol), the

gas constant R = 8.31 J/mol/K and temperature T = 300 K. M which is a very large number (larger
than any of the possible flux and Gibbs free energy). Note also the difference between the internal
stoichiometric matrix (Sint) used for the pseudo steady-state assumption, versus the full stoichiometric
matrix (S) used in the Gibbs free energy calculation.

Equations 29-30 should be familiar, and are exactly the same as in previous sections. To understand
how the other two constraints (27-28) enforce thermodynamic feasibility, we consider three possible cases
for each reaction j separately:

1. vj > 0 : the only possible value that yj can have is 1, otherwise, Myj − vj would be negative and
violate constraint 27. Therefore, constraint 28 becomes 0 < M + ∆rG

′
j < M , which means that

∆rG
′
j < 0.

2. vj < 0 : the only possible value that yj can have is 0, otherwise, Myj − vj would be larger than
M and violate constraint 27. Therefore, constraint 28 becomes 0 < ∆rG

′
j < M , which means that

∆rG
′
j > 0.

3. vj = 0 : both 0 and 1 are possible solutions for yj . Therefore, there are no constraints on ∆rG
′
j .

Summarizing these 3 cases, one can concisely write:

∀j : vj = 0 ∨ sign(vj) = −sign(∆rG
′
j) , (31)

which is exactly the second law of thermodynamics.

3.5 Loopless Flux Balance Analysis (ll-FBA)

The loopless algorithm [21] is very similar to TFBA, except that there are no actual thermodynamic
values. This way, thermodynamically infeasible internal (Type III) cycles are eliminated, while all other
pathways are kept [19]. The set of equations describing ll-FBA are:

ll-FBA

v∗ = argmax
v

c⊤v

such that

Sintv = 0 (32)

vLB ≤ v ≤ vUB (33)

0 ≤ My − v ≤ M (34)

0 < My +∆rG
′ < M (35)

∆rG
′ ∈ ker (S)

⊥
(36)

here, ∆rG
′ is not constrained by the ∆rG

′◦ and the metabolite concentrations, but is only required to
be orthogonal to the null-space of S (or, equivalently, to be in image(S⊤)).
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Why does ll-FBA not eliminate type II cycles from the set of flux solutions? These futile cycles
“waste” resources such as ATP, but are thermodynamically feasible. They are only considered “cycles”
because we chose to give co-factors a special status (namely, they are external metabolites that do not
need to be kept at steady-state). In other words, type II EFMs are in the null-space of Sint, but not in
the null-space of S (just like type I EFMs). Therefore, it is possible to assign negative ∆rG

′ values to
all reactions in a type II EFMs.

Interestingly, this argument can be applied also to the reverse of such futile cycle. Running a futile
cycle in reverse is sometimes called an Energy Generating Cycle (EGC), and is obviously unrealistic.
Furthermore, unlike type III cycles that do not affect the biomass rate in standard FBA, EGCs have
the potential to increase the maximal biomass yield and pose a more serious problem in FBA models
[5]. This is one of the cases where TFBA differs from ll-FBA, as it prevents the use of EGCs completely,
while ll-FBA doesn’t.

4 Gibbs energy dissipation

4.1 The Gibbs energy dissipation rate of a reaction

For a single reaction, the Gibbs energy dissipation rate of a reaction i is simply the negation of its ∆rG
′

multiplied by the net flux:

gi = −∆rG
′
i · vi (37)

Note that if vi ̸= 0, then the second law of thermodynamics states that ∆rG
′
i and vi must have

opposite signs – therefore gi ≥ 0 is always true.

4.2 The Total Gibbs energy dissipation rate

The total Gibbs energy dissipation rate of an entire cell is defined as gdiss ≡
∑

i gi. If we represent fluxes
in units per gram of dry biomass (e.g. µmol/min/gr), then gdiss can be converted to units of Watts per
gram (J/s/gr). Niebel, Leupold, and Heinemann [13] hypothesized that the total dissipation rate per
unit of biomass might be capped, and showed how adding this constraint to an existing metabolic model
can help predictions. To calculate gdiss, they started with a standard thermodynamic model (such as in
TFBA – see section 3.4) and added the extra constraints needed for the upper bound on total dissipation:

TFBA†

v∗ = argmax
v

c⊤v

such that

Sintv = 0

vLB ≤ v ≤ vUB

0 ≤ My − v ≤ M

0 < My +∆rG
′ < M

∆rG
′ = ∆rG

′◦ +RT · S⊤x

ln(bL) ≤ x ≤ ln(bU )

gdiss = −∆rG
′⊤v

gdiss ≤ gdissmax

(38)

† – with an upper bound on Gibbs energy dissipation rate.
Sometimes, it might be useful to calculate gdiss without committing to a full TFBA model (which

requires collecting all reaction energies and solving it using an MILP solver). Here, we’ll see how the
system in 38 can be converted to a simple LP if we are fine with ignoring the second law constraints of
internal reactions (∆rG

′ ≤ 0).
First, we recall that any set of reaction Gibbs energies can be represented by formation energies

multiplied by the stoichiometric matrix:

∆rG
′ = S⊤ ·∆fG

′ . (39)
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Then, the total dissipation rate can be rewritten as:

gdiss = −∆rG
′⊤v = −(S⊤ ·∆fG

′)⊤v = −∆fG
′⊤S v . (40)

The full stoichiometric matrix is a concatenation of the external (Sext) and internal matrix (Sint), so if
we consider the steady-state assumption (Sintv = 0), we can continue to simply the expression such that:

gdiss = −∆fG
′⊤

[
Sint

Sext

]
v = −∆fG

′⊤
[
Sintv
Sextv

]
= −∆fG

′⊤
[

0
Sextv

]
= −∆fG

′⊤
ext Sext v , (41)

where ∆fG
′
ext is the vector of formation energies for the external metabolites (a sub-vector of ∆fG

′).
Since the concentration of external metabolites is fixed by definition, ∆fG

′
ext will have fixed values that

can usually be computed directly. Using this result, we can formulate the standard FBA problem with
an upper bound on the total Gibbs energy dissipation rate:

FBA

v∗ = argmax
v

c⊤v

such that

Sintv = 0

vLB ≤ v ≤ vUB

gdissmax ≥ −∆fG
′⊤
ext Sext v

(42)

4.2.1 OptKnock and its derivatives

Burgard, Pharkya, and Maranas [3] phrased the OptKnock optimization problem first as a bi-level mixed-
integer linear optimization problem. The inner problem is standard FBA, maximizing an objective
function c⊤inv. This encodes the assumption that each knockout strain we consider for the outer problem,
evolves to maximize the objective (which is typically set to be the biomass function). Then, we choose
the one knockout that maximizes the outer objective c⊤outv – typically the secretion rate of the desired
product (e.g. succinate).

OptKnock

max
y

c⊤outv

subject to

maxv c⊤inv

subject to

Sintv = 0

vLB, j · yj ≤ vj ≤ yj · vUB, j
y ∈ {0, 1}r∑
j (1− yj) ≤ K (43)

where, K is the maximum number of allowed knockouts. The inner LP is a standard FBA optimization
problem, except that a few of the reactions are “knockout out” – when a reaction indicator is set to
0 by the external LP it forces the corresponding flux to zero, i.e. yj = 0 → vj = 0. In addition, we
set vLB, biomass > 0 and ybiomass = 1, since we only want to consider mutants that show at least some
minimal growth. Finally, the external LP places an upper bound on the total number of knockouts,
which is useful for two reasons: (1) making sure we don’t have too many knockouts that would make the
genetic manipulation impractical, and (2) to reduce the computational load required to solve the MILP.
Nevertheless, even for small K, solving the bi-level MILP directly is not tractable for large networks
(such as the genome-scale E. coli model). Fortunately, Burgard, Pharkya, and Maranas [3] provided a
solution, by converting into a single-level MILP using duality theory.

The dual of the inner optimization problem in 43 is:

min
λ,µ,ω

∑
j

yj(vUB, j · µj − vLB, j · ωj)

subject to

S⊤
intλ+ µ− ω ≥ cin

µ,ω ≥ 0 . (44)
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Since duality theory states if the optimums solutions of the primal and dual problems are bounded,
their objective function values must be equal to one another, so ensuring optimality can be achieved by
equating the two objectives: c⊤inv =

∑
j yj(vUB, j · µj − vLB, j · ωj). However, using this equation as a

constraint in the outer optimization problem would make it non-linear, since it contains products of two
variables (yj · µj and yj · ωj). We can, however, use the fact that yj are binary in order to cast this
expression into a linear form.

First, we introduce a new set of auxiliary variables m ∈ Rr, and constrain them to be mj = yj · µj

by adding the following:

0 ≤ mj ≤ yj ·M
µj − (1− yj) ·M ≤ mj ≤ µj . (45)

As before, M is a constant larger than any possible value of µj . Considering the two cases for yj , one
can easily see that yj = 0 → mj = 0 and yj = 1 → mj = µj , which is what we wanted to achieve. We
do exactly the same for ω and another set of variables u ∈ Rr. Then we can rewrite the dual objective
as:

∑
j yj(vUB, jµj − vLB, jωj) = v⊤

UBm− v⊤
LBu.

Using this notion, we get a single-level MILP problem for OptKnock:

OptKnock

max
y,v,λ,µ,ω,m,u

c⊤outv

subject to

Sintv = 0

vLB, j · yj ≤ vj ≤ yj · vUB, j
c⊤inv = v⊤

UBm− v⊤
LBu

cin ≤ S⊤
intλ+ µ− ω

0 ≤ µ,ω

0 ≤ m ≤ y ·M
µ− (1− y) ·M ≤ m ≤ µ

0 ≤ u ≤ y ·M
ω − (1− y) ·M ≤ u ≤ ω∑

j (1− yj) ≤ K (46)

4.3 A few relevant algorithms

4.3.1 Phenotypic Phase Plane (PPP)

This useful concept derived from FBA, is a term for 2D projections on the flux polytope. Typically, one
chooses specific reaction (e.g. exchange of succinate) for the y-axis and the FBA objective (i.e. biomass
rate) for the x-axis. The projection of the flux polytope onto this plane creates a convex polygon shape
and helps to visualize how important a certain flux is for creating biomass. Often for cases where the
selected flux is a fermentation product, the PPP is referred to as a production envelope. It is standard
practice to present strain-design results by overlaying two or more PPPs, e.g. a knockout strain versus
the wild-type (Figure 7). Using such comparisons, it is easy to see if the knockout is useful for forcing a
cell to produce the desired chemical byproduct, by coupling its production to the biomass rate.

4.3.2 Derivatives of OptKnock

A comprehensive review by Machado and Herrg̊ard [9] lists the many published algorithms for in silico
strain design that followed after OptKnock (see Figure 8).

RobustKnock is an improvement for OptKnock, introduced by Tepper and Shlomi [23] in 2010, which
accounts for competing pathways that might reduce the chemical production rates. One common issue
with standard OptKnock, is that it only looks at the maximal rate of the chemical production rate:
max c⊤outv. However, as visualized by the production envelope in Figure 7a, there might be redundancy
in the solution space, where the same biomass rate can be achieved without any production of the desired
chemical. RobustKnock addresses this problem by performing a max-min optimization, i.e. maximizing
the lowest value of c⊤outv over all v that satisfy the inner LP. This method yields solutions like in Figure
7b-c.
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Figure 7: Phenotypic phase planes for anaerobic succinate production from glucose based on the E. coli core
model. (a) wild-type strain (light gray) vs. triple-deletion mutant (ACKr, ATPS4r, FUM) resulting in a design
without growth-coupling (purple). (b) wild-type strain vs. triple-deletion mutant (ACALD, PYK, ME2) resulting
in a partially growth-coupled design. (c) wild-type strain vs. double-deletion mutant (ACALD, LDH D) resulting
in a fully growth-coupled design. Figure is from Machado and Herrg̊ard [9].

Figure 8: A timeline of all constraint-based strain design methods that followed OptKnock (figure is from [9]).

4.3.3 Probabilistic Thermodynamic Analysis (PTA)

Abstract: Random sampling of metabolic fluxes can provide a comprehensive description of the capa-
bilities of a metabolic network. However, current sampling approaches do not model thermodynamics
explicitly, leading to inaccurate predictions of an organism’s potential or actual metabolic operations.
We present a probabilistic framework combining thermodynamic quantities with steady-state flux con-
straints to analyze the properties of a metabolic network. It includes methods for probabilistic metabolic
optimization and for joint sampling of thermodynamic and flux spaces. Applied to a model of Escherichia
coli, we use the methods to reveal known and novel mechanisms of substrate channeling, and to accurately
predict reaction directions and metabolite concentrations. Interestingly, predicted flux distributions are
multimodal, leading to discrete hypotheses on E. coli ’s metabolic capabilities. Python and MATLAB
packages available at https://gitlab.com/csb.ethz/pta. Supplementary data are available at Bioin-
formatics online [6].
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